-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdigit_model.py
70 lines (60 loc) · 2.44 KB
/
digit_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import keras
import tensorflow as tf
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
import cv2
import seaborn as sns
def create_and_train():
batch_size = 128
num_classes = 10
epochs = 10
# input image dimensions
img_rows, img_cols = 28, 28
# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(18, kernel_size=5, padding='same', activation='relu',
input_shape=(28, 28, 1)))
model.add(MaxPooling2D())
model.add(Conv2D(36, kernel_size=5, padding='same', activation='relu'))
model.add(MaxPooling2D())
model.add(Conv2D(72, kernel_size=5, padding='same', activation='relu'))
model.add(MaxPooling2D(padding='same'))
model.add(Flatten())
model.add(Dense(288, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))
model.compile(optimizer="adam",
loss="categorical_crossentropy", metrics=["accuracy"])
score = model.evaluate(x_test, y_test, verbose=0)
fit_info = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=15,
verbose=1,
validation_data=(x_test, y_test))
print('Test loss: {}, Test accuracy {}'.format(score[0], score[1]))
preds = model.predict_classes(x_test)
cv2.imshow("blabla", x_test[2])
print(preds[2])
cv2.waitKey(0)
return model
if __name__ == "__main__":
trained_model = create_and_train()
trained_model.save("models/mnist_model")