-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathLeopardCommon.cpp
472 lines (429 loc) · 19.8 KB
/
LeopardCommon.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
/*
Copyright (c) 2017 Christopher A. Taylor. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of Leopard-RS nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#include "LeopardCommon.h"
#include <thread>
namespace leopard {
//------------------------------------------------------------------------------
// Runtime CPU Architecture Check
//
// Feature checks stolen shamelessly from
// https://github.com/jedisct1/libsodium/blob/master/src/libsodium/sodium/runtime.c
#if defined(HAVE_ANDROID_GETCPUFEATURES)
#include <cpu-features.h>
#endif
#if defined(LEO_TRY_NEON)
# if defined(IOS) && defined(__ARM_NEON__)
// Requires iPhone 5S or newer
# else
// Remember to add LOCAL_STATIC_LIBRARIES := cpufeatures
bool CpuHasNeon = false; // V6 / V7
bool CpuHasNeon64 = false; // 64-bit
# endif
#endif
#if !defined(LEO_TARGET_MOBILE)
#ifdef _MSC_VER
#include <intrin.h> // __cpuid
#pragma warning(disable: 4752) // found Intel(R) Advanced Vector Extensions; consider using /arch:AVX
#endif
#ifdef LEO_TRY_AVX2
bool CpuHasAVX2 = false;
#endif
bool CpuHasSSSE3 = false;
#define CPUID_EBX_AVX2 0x00000020
#define CPUID_ECX_SSSE3 0x00000200
static void _cpuid(unsigned int cpu_info[4U], const unsigned int cpu_info_type)
{
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_AMD64) || defined(_M_IX86))
__cpuid((int *) cpu_info, cpu_info_type);
#else //if defined(HAVE_CPUID)
cpu_info[0] = cpu_info[1] = cpu_info[2] = cpu_info[3] = 0;
# ifdef __i386__
__asm__ __volatile__ ("pushfl; pushfl; "
"popl %0; "
"movl %0, %1; xorl %2, %0; "
"pushl %0; "
"popfl; pushfl; popl %0; popfl" :
"=&r" (cpu_info[0]), "=&r" (cpu_info[1]) :
"i" (0x200000));
if (((cpu_info[0] ^ cpu_info[1]) & 0x200000) == 0) {
return; /* LCOV_EXCL_LINE */
}
# endif
# ifdef __i386__
__asm__ __volatile__ ("xchgl %%ebx, %k1; cpuid; xchgl %%ebx, %k1" :
"=a" (cpu_info[0]), "=&r" (cpu_info[1]),
"=c" (cpu_info[2]), "=d" (cpu_info[3]) :
"0" (cpu_info_type), "2" (0U));
# elif defined(__x86_64__)
__asm__ __volatile__ ("xchgq %%rbx, %q1; cpuid; xchgq %%rbx, %q1" :
"=a" (cpu_info[0]), "=&r" (cpu_info[1]),
"=c" (cpu_info[2]), "=d" (cpu_info[3]) :
"0" (cpu_info_type), "2" (0U));
# else
__asm__ __volatile__ ("cpuid" :
"=a" (cpu_info[0]), "=b" (cpu_info[1]),
"=c" (cpu_info[2]), "=d" (cpu_info[3]) :
"0" (cpu_info_type), "2" (0U));
# endif
#endif
}
#elif defined(LEO_USE_SSE2NEON)
bool CpuHasSSSE3 = true;
#endif // defined(LEO_TARGET_MOBILE)
void InitializeCPUArch()
{
#if defined(LEO_TRY_NEON) && defined(HAVE_ANDROID_GETCPUFEATURES)
AndroidCpuFamily family = android_getCpuFamily();
if (family == ANDROID_CPU_FAMILY_ARM)
{
if (android_getCpuFeatures() & ANDROID_CPU_ARM_FEATURE_NEON)
CpuHasNeon = true;
}
else if (family == ANDROID_CPU_FAMILY_ARM64)
{
CpuHasNeon = true;
if (android_getCpuFeatures() & ANDROID_CPU_ARM64_FEATURE_ASIMD)
CpuHasNeon64 = true;
}
#endif
#if !defined(LEO_TARGET_MOBILE)
unsigned int cpu_info[4];
_cpuid(cpu_info, 1);
CpuHasSSSE3 = ((cpu_info[2] & CPUID_ECX_SSSE3) != 0);
#if defined(LEO_TRY_AVX2)
_cpuid(cpu_info, 7);
CpuHasAVX2 = ((cpu_info[1] & CPUID_EBX_AVX2) != 0);
#endif // LEO_TRY_AVX2
#ifndef LEO_USE_SSSE3_OPT
CpuHasSSSE3 = false;
#endif // LEO_USE_SSSE3_OPT
#ifndef LEO_USE_AVX2_OPT
CpuHasAVX2 = false;
#endif // LEO_USE_AVX2_OPT
#endif // LEO_TARGET_MOBILE
}
//------------------------------------------------------------------------------
// XOR Memory
void xor_mem(
void * LEO_RESTRICT vx, const void * LEO_RESTRICT vy,
uint64_t bytes)
{
#if defined(LEO_TRY_AVX2)
if (CpuHasAVX2)
{
LEO_M256 * LEO_RESTRICT x32 = reinterpret_cast<LEO_M256 *>(vx);
const LEO_M256 * LEO_RESTRICT y32 = reinterpret_cast<const LEO_M256 *>(vy);
while (bytes >= 128)
{
const LEO_M256 x0 = _mm256_xor_si256(_mm256_loadu_si256(x32), _mm256_loadu_si256(y32));
const LEO_M256 x1 = _mm256_xor_si256(_mm256_loadu_si256(x32 + 1), _mm256_loadu_si256(y32 + 1));
const LEO_M256 x2 = _mm256_xor_si256(_mm256_loadu_si256(x32 + 2), _mm256_loadu_si256(y32 + 2));
const LEO_M256 x3 = _mm256_xor_si256(_mm256_loadu_si256(x32 + 3), _mm256_loadu_si256(y32 + 3));
_mm256_storeu_si256(x32, x0);
_mm256_storeu_si256(x32 + 1, x1);
_mm256_storeu_si256(x32 + 2, x2);
_mm256_storeu_si256(x32 + 3, x3);
x32 += 4, y32 += 4;
bytes -= 128;
};
if (bytes > 0)
{
const LEO_M256 x0 = _mm256_xor_si256(_mm256_loadu_si256(x32), _mm256_loadu_si256(y32));
const LEO_M256 x1 = _mm256_xor_si256(_mm256_loadu_si256(x32 + 1), _mm256_loadu_si256(y32 + 1));
_mm256_storeu_si256(x32, x0);
_mm256_storeu_si256(x32 + 1, x1);
}
return;
}
#endif // LEO_TRY_AVX2
LEO_M128 * LEO_RESTRICT x16 = reinterpret_cast<LEO_M128 *>(vx);
const LEO_M128 * LEO_RESTRICT y16 = reinterpret_cast<const LEO_M128 *>(vy);
do
{
const LEO_M128 x0 = _mm_xor_si128(_mm_loadu_si128(x16), _mm_loadu_si128(y16));
const LEO_M128 x1 = _mm_xor_si128(_mm_loadu_si128(x16 + 1), _mm_loadu_si128(y16 + 1));
const LEO_M128 x2 = _mm_xor_si128(_mm_loadu_si128(x16 + 2), _mm_loadu_si128(y16 + 2));
const LEO_M128 x3 = _mm_xor_si128(_mm_loadu_si128(x16 + 3), _mm_loadu_si128(y16 + 3));
_mm_storeu_si128(x16, x0);
_mm_storeu_si128(x16 + 1, x1);
_mm_storeu_si128(x16 + 2, x2);
_mm_storeu_si128(x16 + 3, x3);
x16 += 4, y16 += 4;
bytes -= 64;
} while (bytes > 0);
}
#ifdef LEO_M1_OPT
void xor_mem_2to1(
void * LEO_RESTRICT x,
const void * LEO_RESTRICT y,
const void * LEO_RESTRICT z,
uint64_t bytes)
{
#if defined(LEO_TRY_AVX2)
if (CpuHasAVX2)
{
LEO_M256 * LEO_RESTRICT x32 = reinterpret_cast<LEO_M256 *>(x);
const LEO_M256 * LEO_RESTRICT y32 = reinterpret_cast<const LEO_M256 *>(y);
const LEO_M256 * LEO_RESTRICT z32 = reinterpret_cast<const LEO_M256 *>(z);
while (bytes >= 128)
{
LEO_M256 x0 = _mm256_xor_si256(_mm256_loadu_si256(x32), _mm256_loadu_si256(y32));
x0 = _mm256_xor_si256(x0, _mm256_loadu_si256(z32));
LEO_M256 x1 = _mm256_xor_si256(_mm256_loadu_si256(x32 + 1), _mm256_loadu_si256(y32 + 1));
x1 = _mm256_xor_si256(x1, _mm256_loadu_si256(z32 + 1));
LEO_M256 x2 = _mm256_xor_si256(_mm256_loadu_si256(x32 + 2), _mm256_loadu_si256(y32 + 2));
x2 = _mm256_xor_si256(x2, _mm256_loadu_si256(z32 + 2));
LEO_M256 x3 = _mm256_xor_si256(_mm256_loadu_si256(x32 + 3), _mm256_loadu_si256(y32 + 3));
x3 = _mm256_xor_si256(x3, _mm256_loadu_si256(z32 + 3));
_mm256_storeu_si256(x32, x0);
_mm256_storeu_si256(x32 + 1, x1);
_mm256_storeu_si256(x32 + 2, x2);
_mm256_storeu_si256(x32 + 3, x3);
x32 += 4, y32 += 4, z32 += 4;
bytes -= 128;
};
if (bytes > 0)
{
LEO_M256 x0 = _mm256_xor_si256(_mm256_loadu_si256(x32), _mm256_loadu_si256(y32));
x0 = _mm256_xor_si256(x0, _mm256_loadu_si256(z32));
LEO_M256 x1 = _mm256_xor_si256(_mm256_loadu_si256(x32 + 1), _mm256_loadu_si256(y32 + 1));
x1 = _mm256_xor_si256(x1, _mm256_loadu_si256(z32 + 1));
_mm256_storeu_si256(x32, x0);
_mm256_storeu_si256(x32 + 1, x1);
}
return;
}
#endif // LEO_TRY_AVX2
LEO_M128 * LEO_RESTRICT x16 = reinterpret_cast<LEO_M128 *>(x);
const LEO_M128 * LEO_RESTRICT y16 = reinterpret_cast<const LEO_M128 *>(y);
const LEO_M128 * LEO_RESTRICT z16 = reinterpret_cast<const LEO_M128 *>(z);
do
{
LEO_M128 x0 = _mm_xor_si128(_mm_loadu_si128(x16), _mm_loadu_si128(y16));
x0 = _mm_xor_si128(x0, _mm_loadu_si128(z16));
LEO_M128 x1 = _mm_xor_si128(_mm_loadu_si128(x16 + 1), _mm_loadu_si128(y16 + 1));
x1 = _mm_xor_si128(x1, _mm_loadu_si128(z16 + 1));
LEO_M128 x2 = _mm_xor_si128(_mm_loadu_si128(x16 + 2), _mm_loadu_si128(y16 + 2));
x2 = _mm_xor_si128(x2, _mm_loadu_si128(z16 + 2));
LEO_M128 x3 = _mm_xor_si128(_mm_loadu_si128(x16 + 3), _mm_loadu_si128(y16 + 3));
x3 = _mm_xor_si128(x3, _mm_loadu_si128(z16 + 3));
_mm_storeu_si128(x16, x0);
_mm_storeu_si128(x16 + 1, x1);
_mm_storeu_si128(x16 + 2, x2);
_mm_storeu_si128(x16 + 3, x3);
x16 += 4, y16 += 4, z16 += 4;
bytes -= 64;
} while (bytes > 0);
}
#endif // LEO_M1_OPT
#ifdef LEO_USE_VECTOR4_OPT
void xor_mem4(
void * LEO_RESTRICT vx_0, const void * LEO_RESTRICT vy_0,
void * LEO_RESTRICT vx_1, const void * LEO_RESTRICT vy_1,
void * LEO_RESTRICT vx_2, const void * LEO_RESTRICT vy_2,
void * LEO_RESTRICT vx_3, const void * LEO_RESTRICT vy_3,
uint64_t bytes)
{
#if defined(LEO_TRY_AVX2)
if (CpuHasAVX2)
{
LEO_M256 * LEO_RESTRICT x32_0 = reinterpret_cast<LEO_M256 *> (vx_0);
const LEO_M256 * LEO_RESTRICT y32_0 = reinterpret_cast<const LEO_M256 *>(vy_0);
LEO_M256 * LEO_RESTRICT x32_1 = reinterpret_cast<LEO_M256 *> (vx_1);
const LEO_M256 * LEO_RESTRICT y32_1 = reinterpret_cast<const LEO_M256 *>(vy_1);
LEO_M256 * LEO_RESTRICT x32_2 = reinterpret_cast<LEO_M256 *> (vx_2);
const LEO_M256 * LEO_RESTRICT y32_2 = reinterpret_cast<const LEO_M256 *>(vy_2);
LEO_M256 * LEO_RESTRICT x32_3 = reinterpret_cast<LEO_M256 *> (vx_3);
const LEO_M256 * LEO_RESTRICT y32_3 = reinterpret_cast<const LEO_M256 *>(vy_3);
while (bytes >= 128)
{
const LEO_M256 x0_0 = _mm256_xor_si256(_mm256_loadu_si256(x32_0), _mm256_loadu_si256(y32_0));
const LEO_M256 x1_0 = _mm256_xor_si256(_mm256_loadu_si256(x32_0 + 1), _mm256_loadu_si256(y32_0 + 1));
const LEO_M256 x2_0 = _mm256_xor_si256(_mm256_loadu_si256(x32_0 + 2), _mm256_loadu_si256(y32_0 + 2));
const LEO_M256 x3_0 = _mm256_xor_si256(_mm256_loadu_si256(x32_0 + 3), _mm256_loadu_si256(y32_0 + 3));
_mm256_storeu_si256(x32_0, x0_0);
_mm256_storeu_si256(x32_0 + 1, x1_0);
_mm256_storeu_si256(x32_0 + 2, x2_0);
_mm256_storeu_si256(x32_0 + 3, x3_0);
x32_0 += 4, y32_0 += 4;
const LEO_M256 x0_1 = _mm256_xor_si256(_mm256_loadu_si256(x32_1), _mm256_loadu_si256(y32_1));
const LEO_M256 x1_1 = _mm256_xor_si256(_mm256_loadu_si256(x32_1 + 1), _mm256_loadu_si256(y32_1 + 1));
const LEO_M256 x2_1 = _mm256_xor_si256(_mm256_loadu_si256(x32_1 + 2), _mm256_loadu_si256(y32_1 + 2));
const LEO_M256 x3_1 = _mm256_xor_si256(_mm256_loadu_si256(x32_1 + 3), _mm256_loadu_si256(y32_1 + 3));
_mm256_storeu_si256(x32_1, x0_1);
_mm256_storeu_si256(x32_1 + 1, x1_1);
_mm256_storeu_si256(x32_1 + 2, x2_1);
_mm256_storeu_si256(x32_1 + 3, x3_1);
x32_1 += 4, y32_1 += 4;
const LEO_M256 x0_2 = _mm256_xor_si256(_mm256_loadu_si256(x32_2), _mm256_loadu_si256(y32_2));
const LEO_M256 x1_2 = _mm256_xor_si256(_mm256_loadu_si256(x32_2 + 1), _mm256_loadu_si256(y32_2 + 1));
const LEO_M256 x2_2 = _mm256_xor_si256(_mm256_loadu_si256(x32_2 + 2), _mm256_loadu_si256(y32_2 + 2));
const LEO_M256 x3_2 = _mm256_xor_si256(_mm256_loadu_si256(x32_2 + 3), _mm256_loadu_si256(y32_2 + 3));
_mm256_storeu_si256(x32_2, x0_2);
_mm256_storeu_si256(x32_2 + 1, x1_2);
_mm256_storeu_si256(x32_2 + 2, x2_2);
_mm256_storeu_si256(x32_2 + 3, x3_2);
x32_2 += 4, y32_2 += 4;
const LEO_M256 x0_3 = _mm256_xor_si256(_mm256_loadu_si256(x32_3), _mm256_loadu_si256(y32_3));
const LEO_M256 x1_3 = _mm256_xor_si256(_mm256_loadu_si256(x32_3 + 1), _mm256_loadu_si256(y32_3 + 1));
const LEO_M256 x2_3 = _mm256_xor_si256(_mm256_loadu_si256(x32_3 + 2), _mm256_loadu_si256(y32_3 + 2));
const LEO_M256 x3_3 = _mm256_xor_si256(_mm256_loadu_si256(x32_3 + 3), _mm256_loadu_si256(y32_3 + 3));
_mm256_storeu_si256(x32_3, x0_3);
_mm256_storeu_si256(x32_3 + 1, x1_3);
_mm256_storeu_si256(x32_3 + 2, x2_3);
_mm256_storeu_si256(x32_3 + 3, x3_3);
x32_3 += 4, y32_3 += 4;
bytes -= 128;
}
if (bytes > 0)
{
const LEO_M256 x0_0 = _mm256_xor_si256(_mm256_loadu_si256(x32_0), _mm256_loadu_si256(y32_0));
const LEO_M256 x1_0 = _mm256_xor_si256(_mm256_loadu_si256(x32_0 + 1), _mm256_loadu_si256(y32_0 + 1));
const LEO_M256 x0_1 = _mm256_xor_si256(_mm256_loadu_si256(x32_1), _mm256_loadu_si256(y32_1));
const LEO_M256 x1_1 = _mm256_xor_si256(_mm256_loadu_si256(x32_1 + 1), _mm256_loadu_si256(y32_1 + 1));
_mm256_storeu_si256(x32_0, x0_0);
_mm256_storeu_si256(x32_0 + 1, x1_0);
_mm256_storeu_si256(x32_1, x0_1);
_mm256_storeu_si256(x32_1 + 1, x1_1);
const LEO_M256 x0_2 = _mm256_xor_si256(_mm256_loadu_si256(x32_2), _mm256_loadu_si256(y32_2));
const LEO_M256 x1_2 = _mm256_xor_si256(_mm256_loadu_si256(x32_2 + 1), _mm256_loadu_si256(y32_2 + 1));
const LEO_M256 x0_3 = _mm256_xor_si256(_mm256_loadu_si256(x32_3), _mm256_loadu_si256(y32_3));
const LEO_M256 x1_3 = _mm256_xor_si256(_mm256_loadu_si256(x32_3 + 1), _mm256_loadu_si256(y32_3 + 1));
_mm256_storeu_si256(x32_2, x0_2);
_mm256_storeu_si256(x32_2 + 1, x1_2);
_mm256_storeu_si256(x32_3, x0_3);
_mm256_storeu_si256(x32_3 + 1, x1_3);
}
return;
}
#endif // LEO_TRY_AVX2
LEO_M128 * LEO_RESTRICT x16_0 = reinterpret_cast<LEO_M128 *> (vx_0);
const LEO_M128 * LEO_RESTRICT y16_0 = reinterpret_cast<const LEO_M128 *>(vy_0);
LEO_M128 * LEO_RESTRICT x16_1 = reinterpret_cast<LEO_M128 *> (vx_1);
const LEO_M128 * LEO_RESTRICT y16_1 = reinterpret_cast<const LEO_M128 *>(vy_1);
LEO_M128 * LEO_RESTRICT x16_2 = reinterpret_cast<LEO_M128 *> (vx_2);
const LEO_M128 * LEO_RESTRICT y16_2 = reinterpret_cast<const LEO_M128 *>(vy_2);
LEO_M128 * LEO_RESTRICT x16_3 = reinterpret_cast<LEO_M128 *> (vx_3);
const LEO_M128 * LEO_RESTRICT y16_3 = reinterpret_cast<const LEO_M128 *>(vy_3);
do
{
const LEO_M128 x0_0 = _mm_xor_si128(_mm_loadu_si128(x16_0), _mm_loadu_si128(y16_0));
const LEO_M128 x1_0 = _mm_xor_si128(_mm_loadu_si128(x16_0 + 1), _mm_loadu_si128(y16_0 + 1));
const LEO_M128 x2_0 = _mm_xor_si128(_mm_loadu_si128(x16_0 + 2), _mm_loadu_si128(y16_0 + 2));
const LEO_M128 x3_0 = _mm_xor_si128(_mm_loadu_si128(x16_0 + 3), _mm_loadu_si128(y16_0 + 3));
_mm_storeu_si128(x16_0, x0_0);
_mm_storeu_si128(x16_0 + 1, x1_0);
_mm_storeu_si128(x16_0 + 2, x2_0);
_mm_storeu_si128(x16_0 + 3, x3_0);
x16_0 += 4, y16_0 += 4;
const LEO_M128 x0_1 = _mm_xor_si128(_mm_loadu_si128(x16_1), _mm_loadu_si128(y16_1));
const LEO_M128 x1_1 = _mm_xor_si128(_mm_loadu_si128(x16_1 + 1), _mm_loadu_si128(y16_1 + 1));
const LEO_M128 x2_1 = _mm_xor_si128(_mm_loadu_si128(x16_1 + 2), _mm_loadu_si128(y16_1 + 2));
const LEO_M128 x3_1 = _mm_xor_si128(_mm_loadu_si128(x16_1 + 3), _mm_loadu_si128(y16_1 + 3));
_mm_storeu_si128(x16_1, x0_1);
_mm_storeu_si128(x16_1 + 1, x1_1);
_mm_storeu_si128(x16_1 + 2, x2_1);
_mm_storeu_si128(x16_1 + 3, x3_1);
x16_1 += 4, y16_1 += 4;
const LEO_M128 x0_2 = _mm_xor_si128(_mm_loadu_si128(x16_2), _mm_loadu_si128(y16_2));
const LEO_M128 x1_2 = _mm_xor_si128(_mm_loadu_si128(x16_2 + 1), _mm_loadu_si128(y16_2 + 1));
const LEO_M128 x2_2 = _mm_xor_si128(_mm_loadu_si128(x16_2 + 2), _mm_loadu_si128(y16_2 + 2));
const LEO_M128 x3_2 = _mm_xor_si128(_mm_loadu_si128(x16_2 + 3), _mm_loadu_si128(y16_2 + 3));
_mm_storeu_si128(x16_2, x0_2);
_mm_storeu_si128(x16_2 + 1, x1_2);
_mm_storeu_si128(x16_2 + 2, x2_2);
_mm_storeu_si128(x16_2 + 3, x3_2);
x16_2 += 4, y16_2 += 4;
const LEO_M128 x0_3 = _mm_xor_si128(_mm_loadu_si128(x16_3), _mm_loadu_si128(y16_3));
const LEO_M128 x1_3 = _mm_xor_si128(_mm_loadu_si128(x16_3 + 1), _mm_loadu_si128(y16_3 + 1));
const LEO_M128 x2_3 = _mm_xor_si128(_mm_loadu_si128(x16_3 + 2), _mm_loadu_si128(y16_3 + 2));
const LEO_M128 x3_3 = _mm_xor_si128(_mm_loadu_si128(x16_3 + 3), _mm_loadu_si128(y16_3 + 3));
_mm_storeu_si128(x16_3, x0_3);
_mm_storeu_si128(x16_3 + 1, x1_3);
_mm_storeu_si128(x16_3 + 2, x2_3);
_mm_storeu_si128(x16_3 + 3, x3_3);
x16_3 += 4, y16_3 += 4;
bytes -= 64;
} while (bytes > 0);
}
#endif // LEO_USE_VECTOR4_OPT
void VectorXOR_Threads(
const uint64_t bytes,
unsigned count,
void** x,
void** y)
{
#ifdef LEO_USE_VECTOR4_OPT
if (count >= 4)
{
int i_end = count - 4;
#pragma omp parallel for
for (int i = 0; i <= i_end; i += 4)
{
xor_mem4(
x[i + 0], y[i + 0],
x[i + 1], y[i + 1],
x[i + 2], y[i + 2],
x[i + 3], y[i + 3],
bytes);
}
count %= 4;
i_end -= count;
x += i_end;
y += i_end;
}
#endif // LEO_USE_VECTOR4_OPT
for (unsigned i = 0; i < count; ++i)
xor_mem(x[i], y[i], bytes);
}
void VectorXOR(
const uint64_t bytes,
unsigned count,
void** x,
void** y)
{
#ifdef LEO_USE_VECTOR4_OPT
if (count >= 4)
{
int i_end = count - 4;
for (int i = 0; i <= i_end; i += 4)
{
xor_mem4(
x[i + 0], y[i + 0],
x[i + 1], y[i + 1],
x[i + 2], y[i + 2],
x[i + 3], y[i + 3],
bytes);
}
count %= 4;
i_end -= count;
x += i_end;
y += i_end;
}
#endif // LEO_USE_VECTOR4_OPT
for (unsigned i = 0; i < count; ++i)
xor_mem(x[i], y[i], bytes);
}
} // namespace leopard