forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathefficientdet_d0.yml
157 lines (147 loc) · 3.04 KB
/
efficientdet_d0.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
architecture: EfficientDet
max_iters: 281250
use_gpu: true
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar
weights: output/efficientdet_d0/model_final
log_iter: 20
snapshot_iter: 10000
metric: COCO
save_dir: output
num_classes: 81
use_ema: true
ema_decay: 0.9998
EfficientDet:
backbone: EfficientNet
fpn: BiFPN
efficient_head: EfficientHead
anchor_grid: AnchorGrid
box_loss_weight: 50.
EfficientNet:
# norm_type: sync_bn
# TODO
norm_type: bn
scale: b0
use_se: true
BiFPN:
num_chan: 64
repeat: 3
levels: 5
EfficientHead:
repeat: 3
num_chan: 64
prior_prob: 0.01
num_anchors: 9
gamma: 1.5
alpha: 0.25
delta: 0.1
output_decoder:
score_thresh: 0.05 # originally 0.
nms_thresh: 0.5
pre_nms_top_n: 1000 # originally 5000
detections_per_im: 100
nms_eta: 1.0
AnchorGrid:
anchor_base_scale: 4
num_scales: 3
aspect_ratios: [[1, 1], [1.4, 0.7], [0.7, 1.4]]
LearningRate:
base_lr: 0.16
schedulers:
- !CosineDecayWithSkip
total_steps: 281250
skip_steps: 938
- !LinearWarmup
start_factor: 0.05
steps: 938
OptimizerBuilder:
clip_grad_by_norm: 10.
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.00004
type: L2
TrainReader:
inputs_def:
fields: ['image', 'im_id', 'fg_num', 'gt_label', 'gt_target']
dataset:
!COCODataSet
image_dir: train2017
anno_path: annotations/instances_train2017.json
dataset_dir: dataset/coco
sample_transforms:
- !DecodeImage
to_rgb: true
- !RandomFlipImage
prob: 0.5
- !NormalizeImage
is_channel_first: false
is_scale: true
mean: [0.485,0.456,0.406]
std: [0.229, 0.224,0.225]
- !RandomScaledCrop
target_dim: 512
scale_range: [.1, 2.]
interp: 1
- !Permute
to_bgr: false
channel_first: true
- !TargetAssign
image_size: 512
batch_size: 16
shuffle: true
worker_num: 32
bufsize: 16
use_process: true
drop_empty: false
EvalReader:
inputs_def:
fields: ['image', 'im_info', 'im_id']
dataset:
!COCODataSet
image_dir: val2017
anno_path: annotations/instances_val2017.json
dataset_dir: dataset/coco
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !NormalizeImage
is_channel_first: false
is_scale: true
mean: [0.485,0.456,0.406]
std: [0.229, 0.224,0.225]
- !ResizeAndPad
target_dim: 512
interp: 1
- !Permute
channel_first: true
to_bgr: false
drop_empty: false
batch_size: 16
shuffle: false
worker_num: 2
TestReader:
inputs_def:
fields: ['image', 'im_info', 'im_id']
image_shape: [3, 512, 512]
dataset:
!ImageFolder
anno_path: annotations/instances_val2017.json
sample_transforms:
- !DecodeImage
to_rgb: true
with_mixup: false
- !NormalizeImage
is_channel_first: false
is_scale: true
mean: [0.485,0.456,0.406]
std: [0.229, 0.224,0.225]
- !ResizeAndPad
target_dim: 512
interp: 1
- !Permute
channel_first: true
to_bgr: false
batch_size: 16
shuffle: false