-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
370 lines (315 loc) · 17.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import lib.architectures as architectures
import lib.datasets as datasets
from lib.helpers.initialization import WeightInit
from lib.helpers.labels_preprocessing import labels2one_hot
from lib.dataset_metrics import *
from lib.trainer import *
from lib.training_metrics import *
from lib.visualization import *
import datetime
import pickle
from cmdparser import parser
import matplotlib.backends.backend_pdf
import torch.optim as optim
args = parser.parse_args()
if args.save_dir != '':
save_dir = args.save_dir
else:
save_dir = '_'.join(str(datetime.datetime.now()).split(' '))
script_dir = Path(__file__).parent
save_path = os.path.join(os.path.join(str(script_dir), os.path.join(os.path.join('results', args.dataset)),
args.architecture), save_dir)
# create log file
# if just visualization - no need to create a file, else it will overwrite the training info
if args.train_networks:
if not os.path.exists(save_path):
os.makedirs(save_path)
log_file = os.path.join(save_path, "stdout.txt")
# write parsed args to log file
log = open(log_file, "a")
for arg in vars(args):
print(arg, getattr(args, arg))
log.write(arg + ':' + str(getattr(args, arg)) + '\n')
log.close()
dataset = None
is_gpu = torch.cuda.is_available()
# 1. load dataset
print("Load/create dataset with indices")
dataset_init_method = getattr(datasets, args.dataset)
dataset = dataset_init_method(is_gpu, args)
# Get a sample input from the data loader to infer color channels/size
net_input, net_classes, _ = next(iter(dataset.train_loader))
# get the amount of color channels in the input images
args.num_colors = net_input.size(1)
multilabel = True if len(net_classes.shape) > 1 else False
# 2. visualize data
print("Visualize data")
vis = Visualizer()
# when computing dataset metrics, for datasets with uneven img sizes the batch-size=1
# so there will be too many files and a "too many files open" error might occur
if not args.compute_dataset_metrics and not args.batch_size == 1:
vis.check_images(dataset)
'''if not args.multilabel:
vis.check_dataset_class_balance(dataset)'''
# 3. calculate dataset metrics, like img entropy, segment count etc.
print("Calculate dataset metrics")
m = DatasetMetrics(dataset, args.dataset)
if args.compute_dataset_metrics:
m.segment_count()
m.save()
m.img_entropy()
m.save()
m.img_frequency(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
m.save()
if args.dataset == "CIFAR10":
m.human_uncertainty_CIFAR10()
if args.dataset == "VOCDetection":
m.additional_metrics_VOCDetection()
m.save()
m.edge_strength()
m.save()
print(m.evaluation)
metrics_train = m.evaluation[m.evaluation.index.str.contains('/train/', regex=False)]
metrics_test = m.evaluation[m.evaluation.index.str.contains('/test/', regex=False)]
# plot metric histograms
if 'entropy' in m.evaluation:
vis.visualize_metric_histogram(metrics_train['entropy'], 'Entropy', 'Bits', 50,
os.path.join(dataset.name,'train'))
if 'edge_strength' in m.evaluation:
vis.visualize_metric_histogram(metrics_train['edge_strength'], 'Edge strengths',
'Summed edge strengths', 50,
os.path.join(dataset.name,'train'))
if 'freq_coeff_percentage' in m.evaluation:
vis.visualize_metric_histogram(metrics_train['freq_coeff_percentage'], 'Frequency',
'Frequency % coeff needed', 50,
os.path.join(dataset.name,'train'))
if args.dataset == 'ImageNet':
if 'segcount' in m.evaluation:
vis.visualize_metric_histogram(metrics_train['segcount'], 'Segment count', 'Segment count', 20,
os.path.join(dataset.name,'train'))
if args.dataset == 'KTH_TIPS':
if 'segcount' in m.evaluation:
vis.visualize_metric_histogram(metrics_train['segcount'], 'Segment count', 'Segment count', 10,
os.path.join(dataset.name,'train'))
if args.dataset == 'CIFAR10':
if 'segcount' in m.evaluation:
vis.visualize_metric_histogram(metrics_train['segcount'], 'Segment count', 'Segment count', 10,
os.path.join(dataset.name,'train'))
if 'human_uncertainty' in m.evaluation:
vis.visualize_metric_histogram(metrics_test['human_uncertainty'],
'Pred. entropy of human uncertainty',
'Bits', 15,
os.path.join(dataset.name,'test'))
if args.dataset == 'VOCDetection':
if 'segcount' in m.evaluation:
vis.visualize_metric_histogram(metrics_train['segcount'], 'Segment count', 'Segment count', 50,
os.path.join(dataset.name,'train'))
if 'img_difficulty' in m.evaluation:
vis.visualize_metric_histogram(metrics_train['img_difficulty'][m.evaluation['img_difficulty'].notnull()],
'Image difficulty',
'Human response time in seconds', 50,
os.path.join(dataset.name,'train'))
if 'obj_sizes' in m.evaluation:
vis.visualize_metric_histogram(metrics_train['obj_sizes'],
'Object sizes',
'Bounding box area', 15,
os.path.join(dataset.name,'train'))
if 'num_instances' in m.evaluation:
vis.visualize_metric_histogram(metrics_train['num_instances'],
'Number of instances',
'Number of instances', [1,2,3,4,8],
os.path.join(dataset.name,'train'))
# 4a. NN training
if args.train_networks:
print("NN training")
# if random labels - store them in order to compare later
if args.randomize_labels and not os.path.exists(os.path.join(save_path, 'random_labels.csv')):
random_labels = pd.DataFrame.from_dict({'img_paths':list(dataset.random_labels.keys()),
'labels':list(dataset.random_labels.values())})
random_labels.set_index('img_paths', inplace=True)
random_labels.to_csv(os.path.join(save_path, 'random_labels.csv'))
if args.resume:
checkpoint = torch.load(os.path.join(save_path, 'model_parameters.tar'))
start_network = int(checkpoint['net_name'].split(' ')[-1])
else:
start_network = 0
# compute for every network the agreement of correct indices
# train several networks. in this case - same architecture/different initialization
for i in range(start_network, args.num_networks, 1):
# import model from architectures class
if args.architecture == "DenseNet":
net = torch.hub.load('pytorch/vision:v0.6.0', 'densenet121', pretrained=False)
net.classifier = nn.Linear(1024, dataset.num_classes)
else:
net_init_method = getattr(architectures, args.architecture)
net = net_init_method(num_classes=len(dataset.idx_to_class), num_channels=args.num_colors, args=args)
print(net)
# Initialize the weights of the model, by default according to He et al.
print("Initializing network with: " + args.weight_init)
WeightInitializer = WeightInit(args.weight_init)
WeightInitializer.init_model(net)
net_name = args.architecture + ' ' + str(i)
print("Training architecture "+ str(net_name))
if multilabel:
# combines a Sigmoid layer and the BCELoss in one single class
criterion = nn.BCEWithLogitsLoss()
else:
criterion = nn.CrossEntropyLoss()
# optimizer and scheduler for VOCDetection
# https://arxiv.org/pdf/2009.14119v2.pdf
# https://openreview.net/pdf?id=KsN9p5qJN3
if args.optimizer_type == 'Adam':
optimizer = optim.Adam(net.parameters(), lr=args.learning_rate,
weight_decay=args.weight_decay)
elif args.optimizer_type == 'SGD':
optimizer = optim.SGD(net.parameters(), lr=args.learning_rate,
momentum=args.sgd_momentum, weight_decay=args.weight_decay)
'''
# optimizer and scheduler used for CIFAR10
optimizer = optim.SGD(net.parameters(), lr=args.learning_rate,
momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)'''
t = Trainer(dataset, net, optimizer, criterion, net_name, scheduler_type=args.scheduler_type,
save_path=save_path, resume=args.resume and (start_network == i),
metrics=m.evaluation,
args=args)
# after each epoch, test is also called in train
# and correct_indices are saved for both train and test
t.train(args.epochs)
if not args.multilabel:
t.check_accuracy()
# 4b
def load_indices_correct(save_path, data_mode, indices_type='network_indices_correct'):
networks_indices_correct = []
for file in os.listdir(save_path):
if file.endswith(".pkl") and indices_type in file and data_mode in file:
with open(os.path.join(save_path, file), "rb") as fp: # Unpickling
network_indices_correct = pickle.load(fp)
networks_indices_correct.append(network_indices_correct)
return networks_indices_correct
# 5. compute training metrics, like indices agreement and correlate them with dataset metrics
if args.visualize_results:
print("Calculate agreement and other training metrics")
print("Loading networks_indices_correct ...")
vis_save_path = os.path.join(save_path, args.agreement_type)
if not os.path.exists(vis_save_path):
os.makedirs(vis_save_path)
pdf = matplotlib.backends.backend_pdf.PdfPages(os.path.join(vis_save_path, "output.pdf"))
for mode in ['train', 'test']:
networks_indices_correct = load_indices_correct(save_path, data_mode=mode,
indices_type='network_indices_correct')
tm = TrainingMetrics()
# calculate
print("Calculating ...")
if not args.randomize_labels and not os.path.exists(os.path.join(save_path, 'random_labels.csv')):
dataset_labels = m.evaluation['labels']
else:
dataset_labels = pd.read_csv(os.path.join(save_path, 'random_labels.csv'))
dataset_labels.set_index('img_paths', inplace=True)
dataset_labels = dataset_labels['labels']
if args.multilabel:
# transform multilabel prediction (with 0 or 1 for every class of an image)
# into the single label form:
# 1.exact match, 2. learning the same class, e.g. (0,1,0,0) for GT (0,1,1,0)
# 3. learning at least one correct class
labels_one_hot = labels2one_hot(dataset_labels, dataset.num_classes)
labels_one_hot = pd.DataFrame(labels_one_hot.items(), columns=['img_paths', 'labels'])
labels_one_hot.set_index('img_paths', inplace=True)
labels_one_hot = labels_one_hot['labels']
instance_agreement, lower_bound, mean_accuracy, std_accuracy, agreement_indices = \
tm.calc_agreement_multilabel(networks_indices_correct, labels_one_hot, args.agreement_type)
else:
instance_agreement, lower_bound, mean_accuracy, std_accuracy, agreement_indices = \
tm.calc_agreement(networks_indices_correct, dataset_labels, args.save_prob_vector)
label_agreement = tm.calc_agreement_labels(agreement_indices, dataset_labels)
# different metrics
entropy = tm.calc_metric(agreement_indices, m.evaluation, 'entropy')
segcount = tm.calc_metric(agreement_indices, m.evaluation, 'segcount')
edge_strength = tm.calc_metric(agreement_indices, m.evaluation, 'edge_strength')
freq_biggest_coeff = tm.calc_metric(agreement_indices, m.evaluation, 'freq_biggest_coeff')
freq_coeff_percentage = tm.calc_metric(agreement_indices, m.evaluation, 'freq_coeff_percentage')
if args.dataset == 'CIFAR10' and mode == 'test':
# predictive entropy of the human uncertainty
human_uncertainty = tm.calc_metric(agreement_indices, m.evaluation, 'human_uncertainty')
if args.dataset == 'VOCDetection':
# human response time
img_difficulty = tm.calc_metric(agreement_indices, m.evaluation, 'img_difficulty')
obj_sizes = tm.calc_metric(agreement_indices, m.evaluation, 'obj_sizes')
num_instances = tm.calc_metric(agreement_indices, m.evaluation, 'num_instances')
if args.dataset == 'KTH_TIPS':
img_rotation = tm.calc_metric_distinct(networks_indices_correct,
agreement_indices, m.evaluation, 'rotation')
img_illumination = tm.calc_metric_distinct(networks_indices_correct,
agreement_indices, m.evaluation, 'illumination')
img_scale = tm.calc_metric(agreement_indices, m.evaluation, 'scale')
# visualize
title = dataset.name + ' ' + args.architecture + ' ' + mode
vis.visualize_instance_agreement(instance_agreement, lower_bound, mean_accuracy,
std_accuracy,
title=title,
save_path=vis_save_path, pdf=pdf)
if not args.multilabel:
vis.visualize_label_agreement_distribution(label_agreement, dataset.num_classes,
idx_to_label=dataset.idx_to_class,
title=title,
save_path=vis_save_path, pdf=pdf)
vis.visualize_metric(entropy, 'Entropy', 'Bits', instance_agreement,
lower_bound, mean_accuracy, std_accuracy,
title=title,
save_path=vis_save_path, pdf=pdf)
vis.visualize_metric(segcount, 'Segment count', 'Segment count',
instance_agreement, lower_bound, mean_accuracy, std_accuracy,
title=title,
save_path=vis_save_path, pdf=pdf)
vis.visualize_metric(edge_strength, 'Edge strengths', 'Summed edge strengths',
instance_agreement, lower_bound, mean_accuracy, std_accuracy,
title=title,
save_path=vis_save_path, pdf=pdf)
vis.visualize_metric(freq_biggest_coeff, 'Frequency biggest coeff', 'Number',
instance_agreement, lower_bound, mean_accuracy, std_accuracy,
title=title,
save_path=vis_save_path, pdf=pdf)
vis.visualize_metric(freq_coeff_percentage, 'Frequency % coeff needed',
'% of coeff (99.98% energy)',
instance_agreement, lower_bound, mean_accuracy, std_accuracy,
title=title,
save_path=vis_save_path, pdf=pdf)
if args.dataset == 'CIFAR10' and mode == 'test':
vis.visualize_metric(human_uncertainty, 'Pred. entropy of human uncertainty',
'Bits',
instance_agreement, lower_bound, mean_accuracy, std_accuracy,
title=title,
save_path=vis_save_path, pdf=pdf)
if args.dataset == 'VOCDetection':
vis.visualize_metric(img_difficulty, 'Image difficulty',
'Human response t. in sec.',
instance_agreement, lower_bound, mean_accuracy, std_accuracy,
title=title,
save_path=vis_save_path, pdf=pdf)
vis.visualize_metric(obj_sizes, 'Object sizes',
'Bounding box area',
instance_agreement, lower_bound, mean_accuracy, std_accuracy,
title=title,
save_path=vis_save_path, pdf=pdf)
vis.visualize_metric(num_instances, 'Number of instances',
'Number of instances',
instance_agreement, lower_bound, mean_accuracy, std_accuracy,
title=title,
save_path=vis_save_path, pdf=pdf)
if args.dataset == 'KTH_TIPS':
vis.visualize_metric_distinct(img_rotation, 'Image rotation',
'Percent rotation', [dataset.rotation_marker, dataset.rotation_type],
instance_agreement, lower_bound, mean_accuracy, std_accuracy,
title=title,
save_path=vis_save_path, pdf=pdf)
vis.visualize_metric_distinct(img_illumination, 'Image illumination',
'Percent illumination', [dataset.illumination_marker, dataset.illumination_type],
instance_agreement, lower_bound, mean_accuracy, std_accuracy,
title=title,
save_path=vis_save_path, pdf=pdf)
vis.visualize_metric(img_scale, 'Image scale',
'Average scale',
instance_agreement, lower_bound, mean_accuracy, std_accuracy,
title=title,
save_path=vis_save_path, pdf=pdf)
pdf.close()