-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathising2d.cu
388 lines (308 loc) · 10.6 KB
/
ising2d.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/*
* Ising model: Halmitonian H = /sum_ij J(sigma_i)(sigma_j)
*/
/*
* 1. Calculate the energy in the program
* 2. Calculate the heat capacity in the program
* 3. Add more inputs to adjust the length of lattice
* 4. A matlab code to plot data.
* data format example:
* position.x position.y spin(-1, 1)
* Iteattion 1: 1 4 -1
* * * *
* * * *
* Iteattion 2: 4 3 1
* * * *
* * * *
* Iteattion N: 35 76 1
* * * *
* * * *
* 5. Compare the numerical value with the analytic value
* 6. Move to 3D
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h> /* time */
#include <curand.h>
#include <curand_kernel.h>
/*
* LATTICE_LENGTH - length of the lattice
* LATTICE_LENGTH - number of element is one lattice
* BOLTZMANN_CONST - bolzmann constant. Set to 1.
*/
#define LATTICE_LENGTH 1024
#define LATTICE_2 (LATTICE_LENGTH * LATTICE_LENGTH)
#define BOLTZMANN_CONST 1
#define N LATTICE_LENGTH
#define WARM_STEP 1e3
#define MEAS_STEP 1e3
#define WARP 1e1
#define NUM_THREAD_X 32
#define NUM_THREAD_Y 32
#define TEMPERATURE 4.0
__device__ int energy(int up, int down, int left, int right, int center);
__global__ void update(int *lattice, double beta, double *E_d, double *M_d, double *E2_d, double *M2_d, int tag, curandState * global_state);
__global__ void printstate(int *lattice);
__global__ void init_rand(curandState * global_state, unsigned long seed);
/* Setup random seed to each kernel */
__global__ void init_rand(curandState * global_state, unsigned long seed){
const unsigned int idx = blockIdx.x * blockDim.x + threadIdx.x;
const unsigned int idy = blockIdx.y * blockDim.y + threadIdx.y;
curand_init(seed, idx + idy * N, 0, &global_state[idx + idy * N]);
__syncthreads();
}
/*
* update is the function to update a point
* 1. flip a point (1 -> -1 or -1 -> 1)
* 2. compare the energy before flip a point and after flip a point
* 3. if the energy with flipped point is small, accept
* 4. if the energy is larger, generate a random number pro_rand (0,1),
* if pro_rand < e^(-beta * delatE), aceept. else reject.
*/
__global__ void update(int* lattice, double beta, double *E_d, double *M_d, double *E2_d, double *M2_d, int tag, curandState * global_state){
// Calculate the global index
// Calculate the global index for the up, down, left, right index.
// declare parameters
int itx, ity, idx, idy, index;
int flip, up, down, left, right, center;
double pro_rand, deltaE, E;
// local index
itx = threadIdx.x;
ity = threadIdx.y;
// global index
idx = blockIdx.x * blockDim.x + itx;
idy = blockIdx.y * blockDim.y + ity;
index = idx * N + idy;
// load data into shared memory
__shared__ int lat[32 + 2][32 + 2];
__syncthreads();
lat[itx+1][ity+1] = lattice[index];
if(idx == 0){
lat[itx][ity + 1] = lattice[index + (N - 1) * N];
}else if(itx == 0){
lat[itx][ity + 1] = lattice[index - N];
}
if(idx == N - 1){
lat[itx + 2][ity + 1] = lattice[index - (N - 1) * N];
}else if(itx == NUM_THREAD_X - 1){
lat[itx + 2][ity + 1] = lattice[index + N -1];
}
if(idy == 0){
lat[itx + 1][ity] = lattice[index + N - 1];
}else if(ity == 0){
lat[itx + 1][ity] = lattice[index - 1];
}
if(idy == N - 1){
lat[itx + 1][ity + 2] = lattice[index - (N - 1)];
}else if(ity == NUM_THREAD_X - 1){
lat[itx + 1][ity + 2] = lattice[index + 1];
}
curandState local_state = global_state[idx * N + idy];
pro_rand = curand_uniform(&local_state);
global_state[idx * N + idy] = local_state;
__syncthreads();
// for even sites
if((idx + idy) % 2 == 0){
up = lat[itx][ity + 1];
down = lat[itx + 2][ity + 1];
left = lat[itx + 1][ity];
right = lat[itx + 1][ity + 2];
center = lat[itx + 1][ity + 1];
// Flip the center element
flip = -center;
// Calculate the difference between these two state
E = energy(up, down, left, right, center);
deltaE = -2.0 * E;
// If deltaE < 0 or pro_rand <= e^(-beta * deltaE), accept new value
if (deltaE < 0 || pro_rand <= exp(- 1.0 * beta * (deltaE * 1.0))){
lat[itx + 1][ity + 1] *= -1;
}
}
// wait for even site completion
__syncthreads();
// for odd sites
if((idx + idy) % 2 == 1){
up = lat[itx][ity + 1];
down = lat[itx + 2][ity + 1];
left = lat[itx + 1][ity];
right = lat[itx + 1][ity + 2];
center = lat[itx + 1][ity + 1];
// Flip the center element
flip = -center;
// Calculate the difference between these two state
E = energy(up, down, left, right, center);
deltaE = -2.0 * E;
// If deltaE < 0 or pro_rand <= e^(-beta * deltaE), accept new value
if (deltaE < 0 || pro_rand <= exp(- 1.0 * beta * (deltaE * 1.0))){
lat[itx + 1][ity + 1] *= -1;
}
}
// wait for odd site completion
__syncthreads();
// store data back
lattice[index] = lat[itx + 1][ity + 1];
if(tag == 1){
E_d[index] += E;
M_d[index] += lat[itx+1][ity+1];
E2_d[index] += E * E;
M2_d[index] += lat[itx+1][ity+1] * lat[itx+1][ity+1];
}
__syncthreads();
}
/*
* printstate is the function to print the whole matrix.
* Since it prints in parallel, we also print the global
* index of the matrx.
* it prints (x, y, (1 or -1)).
*/
__global__ void printstate(int* lattice) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int idy = blockIdx.y * blockDim.y + threadIdx.y;
if (idx < N && idy < N){
printf("%d, %d, %d\n", idx, idy, lattice[idx + idy * N]);
}
__syncthreads();
}
/*
* energy is the function used to calculate the energy between
* (center, up), (center, down), (center, left), (center, right)
*/
__device__ int energy(int up, int down, int left, int right, int center){
double H;
H = - up * center - down * center - left * center - right * center;
return H;
}
/*
* Commandline inputs option
* 1. Tempurature (T)
*
*/
int main (int argc, char *argv[]){
int *lattice;
int *d_lattice;
double *E;
double *E_d;
double *E2;
double *E2_d;
double *M;
double *M_d;
double *M2;
double *M2_d;
double T = TEMPERATURE;
int warmsteps = WARM_STEP;
int nout = MEAS_STEP;
int warp = WARP;
int numthreadx = NUM_THREAD_X;
int numthready = NUM_THREAD_Y;
int numblocksX = LATTICE_LENGTH / numthreadx;
int numblocksY = LATTICE_LENGTH / numthready;
// First input: Tempurature. Usually between (1, 6),
// Critical Tempurature is around 2.2
T = argc > 1 ? atof(argv[1]) : T;
warmsteps = argc > 2 ? atof(argv[2]) : warmsteps;
nout = argc > 3 ? atof(argv[3]) : nout;
warp = argc > 4 ? atof(argv[4]) : warp;
// Define the size of lattice and energy
const size_t bytes_lattice = LATTICE_2 * sizeof(int);
const size_t bytes_E = LATTICE_2 * sizeof(double);
const size_t bytes_M = LATTICE_2 * sizeof(double);
// Allocate memory for lattice. It is a lattice^2 long array.
// The value can only be 1 or -1.
lattice = (int*)malloc(LATTICE_2 * sizeof(int));
E = (double*)malloc(LATTICE_2 * sizeof(double));
M = (double*)malloc(LATTICE_2 * sizeof(double));
E2 = (double*)malloc(LATTICE_2 * sizeof(double));
M2 = (double*)malloc(LATTICE_2 * sizeof(double));
// initialize lattice by rand(-1, 1)
for(int i = 0; i < LATTICE_2; i++){
lattice[i] = 2 * (rand() % 2) - 1;
E[i] = 0.0;
M[i] = 0.0;
E2[i] = 0.0;
M2[i] = 0.0;
}
// Set dimensions of block and grid
dim3 grid(numblocksX, numblocksY, 1);
dim3 thread(numthreadx, numthready,1);
// set up random for each kernel
curandState *global_state;
cudaMalloc(&global_state, LATTICE_2 * sizeof(curandState));
init_rand<<< grid, thread >>> (global_state, unsigned(time(NULL)));
// beta is a parameter in the probability
double beta = 1.0 / (BOLTZMANN_CONST * 1.0) / T;
// Allocate memoery in device and copy from host to device
cudaMalloc((void **)&d_lattice, bytes_lattice);
cudaMalloc((void **)&E_d, bytes_E);
cudaMalloc((void **)&M_d, bytes_M);
cudaMalloc((void **)&E2_d, bytes_E);
cudaMalloc((void **)&M2_d, bytes_M);
cudaMemcpy(d_lattice, lattice, bytes_lattice, cudaMemcpyHostToDevice);
cudaMemcpy(E_d, E, bytes_E, cudaMemcpyHostToDevice);
cudaMemcpy(M_d, M, bytes_M, cudaMemcpyHostToDevice);
cudaMemcpy(E2_d, E2, bytes_E, cudaMemcpyHostToDevice);
cudaMemcpy(M2_d, M2, bytes_M, cudaMemcpyHostToDevice);
// To change the buffer size of printf; otherwise it cannot print all data
cudaDeviceSetLimit(cudaLimitPrintfFifoSize, N * N * sizeof(int));
// printf("Testing for T = %2f, beta = %2f...\n", T, beta);
// Warmup process
// printf("Starting Warming Steps... \n");
int cnt = 0;
for (int iter = 0; iter < warmsteps; iter++){
// printf("\r [ %f% ] ", (100.0 * cnt++) / warmsteps);
update<<<grid, thread>>>(d_lattice, beta, E_d, M_d, E2_d, M2_d, 0, global_state);
cudaDeviceSynchronize();
}
// printf("\n");
// Measure process
// printf("Starting Measurement Steps... \n");
cnt = 0;
int cnt2 = 0;
for (int nstep = 0; nstep < nout; nstep++){
// printf("\r [ %f% ] ", (100.0 * cnt++) / nout);
if(nstep % warp == 0){
cnt2++;
update<<<grid, thread>>>(d_lattice, beta, E_d, M_d, E2_d, M2_d, 1, global_state);
}else{
update<<<grid, thread>>>(d_lattice, beta, E_d, M_d, E2_d, M2_d, 0, global_state);
}
cudaDeviceSynchronize();
}
// printf("\n");
double energy = 0.0;
double magnetization = 0.0;
double energy2 = 0.0;
double magnetization2 = 0.0;
cudaMemcpy(lattice, d_lattice, bytes_E, cudaMemcpyDeviceToHost);
cudaMemcpy(E, E_d, bytes_E, cudaMemcpyDeviceToHost);
cudaMemcpy(M, M_d, bytes_M, cudaMemcpyDeviceToHost);
cudaMemcpy(E2, E2_d, bytes_E, cudaMemcpyDeviceToHost);
cudaMemcpy(M2, M2_d, bytes_M, cudaMemcpyDeviceToHost);
for(int i = 0; i < LATTICE_2; i++){
energy += E[i];
magnetization += M[i];
energy2 += E2[i];
magnetization2 += M2[i];
}
double avg_E = energy / cnt2 / (LATTICE_2 * 1.0) / 2.0;
double avg_M = magnetization / cnt2 / (LATTICE_2 * 1.0);
avg_M = avg_M < 0 ? -avg_M : avg_M;
double avg_E2 = energy2 / cnt2 / (LATTICE_2 * 1.0) / 4.0;
double avg_M2 = magnetization2 / cnt2 / (LATTICE_2 * 1.0);
double heat_cap = 1.0 * (avg_E2 - avg_E * avg_E) / T / T;
double mag_sus = 1.0 * (avg_M2 - avg_M * avg_M) / T;
// printf("Average energy: %5f \n", avg_E);
// printf("Average magnetization: %5f \n", avg_M);
printf("%5f %5f %5f %5f %5f\n", T, avg_E, avg_M, heat_cap, mag_sus);
free(lattice);
free(E);
free(M);
free(E2);
free(M2);
cudaFree(d_lattice);
cudaFree(E_d);
cudaFree(M_d);
cudaFree(E2_d);
cudaFree(M2_d);
return 0;
}