-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
66 lines (58 loc) · 2.41 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return (-lim, lim)
class Actor(nn.Module):
def __init__(self, state_size, action_size, fc1_units=256, fc2_units=128):
"""
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
fc1_units (int): Number of neurons in the first hidden layer
fc2_units (int): Number of neurons in the second hidden layer
"""
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_size*2, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state):
"""Build a network that maps state -> action values"""
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
return torch.tanh(self.fc3(x))
class Critic(nn.Module):
def __init__(self, state_size, action_size, fc1_units=256, fc2_units=128):
"""
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
fc1_units (int): Number of neurons in the first hidden layer
fc2_units (int): Number of neurons in the second hidden layer
"""
super(Critic, self).__init__()
self.fc1 = nn.Linear(2 * (state_size + action_size), fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, 1)
self.bn = nn.BatchNorm1d(fc1_units)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state, action):
"""Build a network that maps (state, action) -> Q values"""
x = F.leaky_relu(self.fc1(torch.cat((state, action.float()), dim=1)))
x = self.bn(x)
x = F.leaky_relu(self.fc2(x))
return self.fc3(x)