-
Notifications
You must be signed in to change notification settings - Fork 19
/
basis_pm1_2D.tex
63 lines (53 loc) · 1.42 KB
/
basis_pm1_2D.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
\begin{flushright} {\tiny {\color{gray} basis\_Pm1\_2D.tex}} \end{flushright}
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
On the reference element $\Omega=[-1,1]\times[-1,1]$ we have three nodes placed as follows:
\input{tikz/tikz_pm1_2D}
Let us assume that the function $f(r,s)$ is to be approximated on $[-1,1]\times[-1,1]$ by
\[
f^h(r,s)=a+br+cs
\]
Note that this is a linear function, not a bilinear one (a direct consequence of this is the
fact that this function cannot be continuous from one element to another).
The function $f^h$ then must fulfill:
\begin{eqnarray}
f^h(r_1,s_1)&=&a \;\;\;\;\;\; =f_1 \nn\\
f^h(r_2,s_2)&=&a+\frac{b}{2}=f_2 \nn\\
f^h(r_3,s_3)&=&a+\frac{c}{2}=f_3 \nn
\end{eqnarray}
This leads to :
\[
a=f_1
\quad
\quad
b=2(f_2-f_1)
\quad
\quad
c=2(f_3-f_1)
\]
Then
\[
f(r,s)=f_1 + 2(f_2-f_1) r + 2(f_3-f_1) s
\]
or,
\[
f(r) = \sum_{i=1}^3 \bN_i(r,s) f_i
\]
with
\begin{mdframed}[backgroundcolor=blue!5]
\begin{eqnarray}
\bN_1(r) &=& 1-2(r+s) \nonumber\\
\bN_2(r) &=& 2r \nonumber\\
\bN_3(r) &=& 2s
\end{eqnarray}
\end{mdframed}
Note that we could also have placed the nodes at a different location:
\input{tikz/tikz_pm1_2D_bis}
and we would then have
\begin{mdframed}[backgroundcolor=blue!5]
\begin{eqnarray}
\bN_1(r) &=& 1-r-s \nonumber\\
\bN_2(r) &=& r \nonumber\\
\bN_3(r) &=& s
\end{eqnarray}
\end{mdframed}
as obtained in Section~\ref{ss:p1}.