-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
132 lines (111 loc) · 4.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import torchnet as tnt
# Settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--dropout', type=float, default=0.25, metavar='P',
help='dropout probability (default: 0.25)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='heavy ball momentum in gradient descent (default: 0.9)')
parser.add_argument('--data-dir', type=str, default='./data',metavar='DIR')
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
# Print out arguments to the log
print('Training LeNet on MNIST')
for p in vars(args).items():
print(' ',p[0]+': ',p[1])
print('\n')
# Data loaders
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(args.data_dir, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(args.data_dir, train=False,download=True, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=1000, shuffle=True, **kwargs)
# The LeNet architecture, with dropout and batch normalization
class View(nn.Module):
def __init__(self,o):
super(View, self).__init__()
self.o = o
def forward(self,x):
return x.view(-1, self.o)
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
def convbn(ci,co,ksz,psz,p):
return nn.Sequential(
nn.Conv2d(ci,co,ksz),
nn.BatchNorm2d(co),
nn.ReLU(True),
nn.MaxPool2d(psz,stride=psz),
nn.Dropout(p))
self.m = nn.Sequential(
convbn(1,20,5,3,args.dropout),
convbn(20,50,5,2,args.dropout),
View(50*2*2),
nn.Linear(50*2*2, 500),
nn.BatchNorm1d(500),
nn.ReLU(True),
nn.Dropout(args.dropout),
nn.Linear(500,10))
def forward(self, x):
return self.m(x)
# Initialize the model, the loss function and the optimizer
model = LeNet()
loss_function = nn.CrossEntropyLoss()
if args.cuda:
model.cuda()
loss_function.cuda()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum = args.momentum)
# Function to train the model on one epoch of data
def train(epoch):
model.train()
for batch_ix, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = loss_function(output, target)
loss.backward()
optimizer.step()
if batch_ix % 100 == 0 and batch_ix>0:
print('[Epoch %2d, batch %3d] training loss: %.4f' %
(epoch, batch_ix, loss.data[0]))
# Test the model on one epoch of validation data
def test():
model.eval()
test_loss = tnt.meter.AverageValueMeter()
top1 = tnt.meter.ClassErrorMeter()
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
loss = loss_function(output, target)
top1.add(output.data, target.data)
test_loss.add(loss.data[0])
print('[Epoch %2d] Average test loss: %.3f, accuracy: %.2f%%\n'
%(epoch, test_loss.value()[0], top1.value()[0]))
if __name__=="__main__":
for epoch in range(1, args.epochs + 1):
train(epoch)
test()