-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfluence.py
150 lines (129 loc) · 6.1 KB
/
influence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import tensorflow as tf
import numpy as np
from vectorify import Vectorify
from conjugate_gradient import conjugate_gradient
from utils import minibatch_run
from Hv_prod import Hv_prod
class Influence:
def __init__(self, func, evalset, loss, trainset, input_ph, target_ph, scale, func_grads=None, loss_grads=None, initial_dampening=0.1e-3, cg_iters=10, normal_equation=False, vervose=False, minibatch_size=1000):
# func The function of which we want to compute the influecne
# evalset The dataset on which func should be evaluated
# loss The
# trainset The
# input_ph The
# target_ph The
# scale The
# func_grads The
# loss_grads The
# dampening The
# cg_iters The
# normal_equation The
# vervose The
# minibatch_size The
if func_grads == None:
func_grads = tf.gradients(func, tf.trainable_variables(),
name="influence_func_grads")
if loss_grads == None:
loss_grads = tf.gradients(loss, tf.trainable_variables(),
name="influence_loss_grads")
self.func_grads = [g for g in func_grads if g is not None]
self.loss_grads = [g for g in loss_grads if g is not None]
self.loss = loss
self.func = func
self.input_ph = input_ph
self.target_ph = target_ph
self.evalset = evalset
self.trainset = trainset
self.sess = tf.get_default_session()
self.initial_dampening = initial_dampening
self.dampening = initial_dampening
self.normal_equation = normal_equation
self.minibatch_size = minibatch_size
self.cg_iters = cg_iters
self.vervose = vervose
self.scale = scale
self.Hvp, self.vecs = Hv_prod(loss, loss_grads)
self.s = None
def Hv_f(self, v):
def minibatch_feed_dict(a, b):
hv_feed_dic = {self.input_ph: self.trainset.images[
a:b], self.target_ph: self.trainset.labels[a:b]}
for i in range(len(self.vecs)):
hv_feed_dic[self.vecs[i]] = v[i]
return hv_feed_dic
# compute the Hvp using the above feed_dict generator and add the dampening
Hvp_np = minibatch_run(self.Hvp, minibatch_feed_dict, len(self.trainset.labels))/self.scale
return Hvp_np + Vectorify(v) * self.dampening
def normal_Hv_f(self, v):
return self.Hv_f(self.Hv_f(v))
def of(self, z, absolute=False):
z_influence, z_grads = self.of_and_g(z, absolute)
return z_influence
def of_and_g(self, z, absolute=False):
if self.s == None:
raise Exception("Before computing the influence of z, s needs to be computed")
feed_dict = {self.input_ph: z[0], self.target_ph: z[1]}
grads_on = Vectorify(self.sess.run(self.loss_grads, feed_dict))
dot_p = abs(grads_on.dot(self.s)) if absolute else -grads_on.dot(self.s)
return dot_p, grads_on
def compute_s(self, evalset_func_grads=None):
self.dampening = self.initial_dampening
if evalset_func_grads == None:
self.evalset_func_grads = minibatch_run(self.func_grads, lambda a, b: {self.input_ph: self.evalset.images[
a:b], self.target_ph: self.evalset.labels[a:b]}, end=len(self.evalset.labels))
else:
self.evalset_func_grads = evalset_func_grads
if not self.normal_equation:
solution, self.cg_error = conjugate_gradient(
self.Hv_f, self.evalset_func_grads, self.cg_iters, vervose=self.vervose)
else:
print("Warning: using the normal equations leads to numerical instability in CG")
solution, self.cg_error = conjugate_gradient(self.normal_Hv_f, self.Hv_f(
self.evalset_func_grads), self.cg_iters, vervose=self.vervose)
self.s = solution* self.scale if solution else None
def robust_compute_s(self, evalset_func_grads=None):
self.dampening = self.initial_dampening
if evalset_func_grads == None:
self.evalset_func_grads = minibatch_run(self.func_grads, lambda a, b: {self.input_ph: self.evalset.images[
a:b], self.target_ph: self.evalset.labels[a:b]}, end=len(self.evalset.labels))
else:
self.evalset_func_grads = evalset_func_grads
while True:
if not self.normal_equation:
solution, self.cg_error = conjugate_gradient(
self.Hv_f, self.evalset_func_grads, self.cg_iters, vervose=self.vervose)
else:
solution, self.cg_error = conjugate_gradient(self.normal_Hv_f, self.Hv_f(
self.evalset_func_grads), self.cg_iters, vervose=self.vervose)
# detect if CG crashed
if solution == None:
self.dampening *= 10
print("changing the dampening to:", self.dampening)
else:
break
self.s = solution*self.scale
def save_s(self, filename):
self.s.save(filename)
def load_s(self, filename):
self.s = Vectorify(filename)
self.evalset_func_grads = minibatch_run(self.func_grads, lambda a, b: {self.input_ph: self.evalset.images[
a:b], self.target_ph: self.evalset.labels[a:b]}, end=len(self.evalset.labels))
# ---------------------------------------------------------------------------------
def rand_hvp(self, n=10):
lst = []
for i in range(n):
rand_v = [np.random.normal(size=g.shape)
for g in self.grads_on_dataset]
res = self.vhv(rand_v)
lst.append(res)
return lst
def hvp(self, v):
Hv = ladd(self.Hv_f(v), lprod(self.dampening, v))
return Hv
def r(self, v):
return lsubtract(b, ladd(Ax_f(x), lprod(self.dampening, x)))
def vhv(self, v):
return ldot(v, self.hvp(v))
def call_cg(self, ):
self.H_inv_grad_on = conjugate_gradient(
self.Hv_f, self.grads_on_dataset, 20, self.dampening)