diff --git a/README.rst b/README.rst index 6d99ffb..7d1da06 100644 --- a/README.rst +++ b/README.rst @@ -21,7 +21,7 @@ tiled, predicted, or compressed form. Many compression and predictor schemes are supported via the imagecodecs library, including LZW, PackBits, Deflate, PIXTIFF, LZMA, LERC, Zstd, JPEG (8 and 12-bit, lossless), JPEG 2000, JPEG XR, JPEG XL, WebP, PNG, Jetraw, -24-bit floating-point, and floating-point horizontal differencing. +24-bit floating-point, and horizontal differencing. Tifffile can also be used to inspect TIFF structures, read image data from multi-dimensional file sequences, write fsspec ReferenceFileSystem for @@ -30,7 +30,7 @@ many proprietary metadata formats. :Author: `Christoph Gohlke `_ :License: BSD 3-Clause -:Version: 2023.2.2 +:Version: 2023.2.3 :DOI: `10.5281/zenodo.6795860 `_ Quickstart @@ -83,9 +83,13 @@ This revision was tested with the following requirements and dependencies Revisions --------- +2023.2.3 + +- Pass 4951 tests. +- Fix overflow in calculation of databytecounts for large NDPI files. + 2023.2.2 -- Pass 4950 tests. - Fix regression reading layered NDPI files. - Add option to specify offset in FileHandle.read_array. @@ -640,14 +644,16 @@ Use Zarr to read parts of the tiled, pyramidal images in the TIFF file: Load the base layer from the Zarr store as a dask array: >>> import dask.array ->>> with imread('temp.ome.tif', aszarr=True) as store: -... dask.array.from_zarr(store, 0) +>>> store = imread('temp.ome.tif', aszarr=True) +>>> dask.array.from_zarr(store, 0) dask.array<...shape=(8, 2, 512, 512, 3)...chunksize=(1, 1, 128, 128, 3)... +>>> store.close() Write the Zarr store to a fsspec ReferenceFileSystem in JSON format: ->>> with imread('temp.ome.tif', aszarr=True) as store: -... store.write_fsspec('temp.ome.tif.json', url='file://') +>>> store = imread('temp.ome.tif', aszarr=True) +>>> store.write_fsspec('temp.ome.tif.json', url='file://') +>>> store.close() Open the fsspec ReferenceFileSystem as a Zarr group: @@ -702,15 +708,15 @@ as NumPy or Zarr arrays: >>> data = image_sequence.asarray() >>> data.shape (1, 2, 64, 64) ->>> with image_sequence.aszarr() as store: -... zarr.open(store, mode='r') +>>> store = image_sequence.aszarr() +>>> zarr.open(store, mode='r') >>> image_sequence.close() Write the Zarr store to a fsspec ReferenceFileSystem in JSON format: ->>> with image_sequence.aszarr() as store: -... store.write_fsspec('temp.json', url='file://') +>>> store = image_sequence.aszarr() +>>> store.write_fsspec('temp.json', url='file://') Open the fsspec ReferenceFileSystem as a Zarr array: