forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chat.py
101 lines (87 loc) · 3.85 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import time
import argparse
import requests
import torch
from PIL import Image
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer, CLIPImageProcessor
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for OpenGVLab/InternVL2-4B model')
parser.add_argument('--repo-id-or-model-path', type=str, default="OpenGVLab/InternVL2-4B",
help='The huggingface repo id for the OpenGVLab/InternVL2-4B model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--image-url-or-path', type=str,
default='https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=64, help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
image_path = args.image_url_or_path
n_predict = args.n_predict
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
load_in_low_bit="sym_int4",
modules_to_not_convert=["vision_model"])
model = model.half().to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
model.eval()
query = args.prompt
image_processor = CLIPImageProcessor.from_pretrained(model_path)
if os.path.exists(image_path):
image = Image.open(image_path).convert('RGB')
else:
image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
pixel_values = image_processor(images=[image], return_tensors='pt').pixel_values
pixel_values = pixel_values.to('xpu')
question = "<image>" + query
generation_config = {
"max_new_tokens": n_predict,
"do_sample": False,
}
with torch.inference_mode():
# ipex_llm model needs a warmup, then inference time can be accurate
model.chat(
pixel_values=None,
question=question,
generation_config=generation_config,
tokenizer=tokenizer,
)
st = time.time()
res = model.chat(
tokenizer=tokenizer,
pixel_values=pixel_values,
question=question,
generation_config=generation_config,
history=[]
)
torch.xpu.synchronize()
end = time.time()
print(f'Inference time: {end-st} s')
print('-'*20, 'Input Image', '-'*20)
print(image_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Chat Output', '-'*20)
print(res)