forked from rahi-lab/YeaZ-GUI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GUI_main.py
1662 lines (1317 loc) · 70.2 KB
/
GUI_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
This script is the main script used to produce a GUI which should help for
cell segmentation. This script can only read .nd2 files containing the
images of cells, especially it displays for each recorded positions (field
of view) the pictures in the time axis.
The script opens first a window which allows you to load an nd2 file and
to load or create an hdf file. The hdf file contains all the masks, so if
it is the first the user segments an nd2 file, a new one should be created.
And it can be then loaded for later use. Along with new hdf file, created
by the name entered by the user (say filename), it creates three other hdf
files (filename_predicted.h5, filename_thresholded.h5 and
filename_segmented.h5) these contain all the steps of the NN to get to the
segmented picture.
After the first window is finished a second one opens, where at each time
index, three pictures
are displayed the t-1 picture, the t picture (current frame which can be
edited) and the t+1 picture. Using the arrows one can navigate through time.
On top of the picture, there is always a mask which is displayed, if no cells
are present in the mask then the mask is blank and the user does not see it.
If one wants to hand anmotate the pictures, one can just start to draw on the
picture using the different functions (New Cell, Add Region, Brush, Eraser,
Save Mask, ...) and the informations will be saved in the mask overlayed on
top of the pictures.
If one wants to segment using a neural network, one can press the
corresponding button (Launch CNN) and select the time range and
the field of views on which the neural network is applied.
Once the neural network has finished predicting, there are still no visible
masks, but on the field of views and time indices where the NN has been
applied, the threshold and segment buttons are enabled. By checking these
two buttons one can either display the thresholded image of the prediction or
display the segmentation of the thresholded prediction.
At this stage, one can correct the segmentation of the prediction using
the functions (New Cell, Add Region, etc..) by selecting the Segment
checkbox and then save them using the Save Seg button.
If the user is happy with the segmentation, the Cell Correspondence button
can be clicked. Until then, the cells get random numbers attributed by
the segmentation algorithm. In order to keep track of the cell through time,
the same cells should have the same number between two different time pictures.
This can be (with some errors) achieved by the Cell Correspondence button,
which tries to attribute the same number to corresponding cells in time.
After that, the final mask is saved and it is always visible when you go on
the corresponding picture. This mask can also be corrected using the
usual buttons (because the Cell Correspondence makes also mistakes).
"""
import sys
import numpy as np
import pandas as pd
import h5py
import skimage
# For writing excel files
#from openpyxl import load_workbook
#from openpyxl import Workbook
# Import everything for the Graphical User Interface from the PyQt5 library.
from PyQt5.QtWidgets import (QApplication, QMainWindow, QDialog, QSpinBox,
QMessageBox, QPushButton, QCheckBox, QAction, QStatusBar, QLabel)
from PyQt5 import QtGui
#Import from matplotlib to use it to display the pictures and masks.
from matplotlib.backends.qt_compat import QtWidgets
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar
from sklearn.decomposition import PCA
import imageio
from PIL import Image, ImageDraw
#append all the paths where the modules are stored. Such that this script
#looks into all of these folders when importing modules.
sys.path.append("./unet")
sys.path.append("./disk")
sys.path.append("./icons")
sys.path.append("./init")
sys.path.append("./misc")
#Import all the other python files
#this file handles the interaction with the disk, so loading/saving images
#and masks and it also runs the neural network.
import Reader as nd
#this file contains a dialog window that takes two integers as entry to swap
#two cell values
import ExchangeCellValues as ecv
#this file contains a dialog window which is opened before the main program
#and allows to load the nd2 and hdf files by browsing through the computer.
import DialogFileBrowser as dfb
#this file contains a window that opens to change the value of one cell. It
#is opened as soon as the user presses with the left click on a specific cell.
import ChangeOneCellValue as cocv
#this file contains a dialog window where a time range and the field of views
#can be selected to then launch a prediction of the neural network on
#a specific range of pictures.
import LaunchBatchPrediction as lbp
#this file initializes all the buttons present in the gui, sets the shortcuts
#to these buttons and also connect the buttons to the function that are
#triggered when the buttons are pressed.
import InitButtons
#this file contains the layout of the main window so it justs puts the buttons
#and the pictures at the desired position in the main window.
import InitLayout
# PlotCanvas for fast plotting
from PlotCanvas import PlotCanvas
import Extract as extr
from image_loader import load_image
from segment import segment
import neural_network as nn
if getattr(sys, 'frozen', False):
path_icons = os.path.join(sys._MEIPASS, "icons/")
path_weights = os.path.join(sys._MEIPASS, 'unet/')
else:
path_icons = './icons/'
path_weights = './unet/'
class NavigationToolbar(NavigationToolbar):
"""This is the standard matplotlib toolbar but only the buttons
that are of interest for this gui are loaded. These buttons allow
to zoom into the pictures/masks and to navigate in the zoomed picture.
A Home button can be used to set the view back to the original view.
"""
toolitems = [t for t in NavigationToolbar.toolitems if
t[0] in ('Home', 'Pan', 'Zoom','Back', 'Forward')]
class App(QMainWindow):
"""This class creates the main window.
"""
def __init__(self, nd2pathstr, hdfpathstr, newhdfstr):
super().__init__()
self.setWindowTitle('YeaZ')
# all these ids are integers which are used to set a connection between
# the button and the function that this button calls.
# There are three of them because it happens that one can trigger three
# different functions with one button.
self.id = 0
self.id2 = 0
self.id3 = 0
self.reader = nd.Reader(hdfpathstr, newhdfstr, nd2pathstr)
# these variables are used to create/read/load the excel file used
# to write the fluorescence values extracted. For each field of view,
# the user will be asked each time to create a new xls file for the
# field of view or to load an existing field of view (this is the role
# of the boolean variable)
self.xlsfilename = ''
self.nd2path = nd2pathstr
# Set the indices for the time axis and the field of view index. These
# indices represent everywhere the current picture (the one that can be
# edited, i.e. the time t frame)
self.Tindex = 0
self.FOVindex = 0
# loading the first images of the cells from the nd2 file
self.currentframe = self.reader.LoadOneImage(self.Tindex,self.FOVindex)
# check if the t+1 time frame exists, avoid failure if there is only
# one picture in the folder/nd2 file
if self.Tindex+1 < self.reader.sizet:
self.nextframe = self.reader.LoadOneImage(self.Tindex+1, self.FOVindex)
else:
self.nextframe = np.zeros([self.reader.sizey, self.reader.sizex])
self.previousframe = np.zeros([self.reader.sizey, self.reader.sizex])
# loading the first masks from the hdf5 file
self.mask_curr = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.mask_previous = np.zeros([self.reader.sizey, self.reader.sizex])
# check if the t+1 mask exists, avoid failure if there is only
# one mask in the hdf file
if self.Tindex+1 < self.reader.sizet:
self.mask_next = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
else:
self.mask_next = np.zeros([self.reader.sizey, self.reader.sizex])
# creates a list of all the buttons, which will then be used in order
# to disable all the other buttons at once when one button/function
# is pressed/used in the gui.
self.buttonlist = []
# setting buttons as attributes
# the shortcuts for the buttons, the functions to which they are
# connected to,... are all set up in the ButtonInit file which is called
# in the self.initUI() method below.
self.button_newcell = QPushButton("New cell")
self.buttonlist.append(self.button_newcell)
self.button_add_region = QPushButton("Add region")
self.buttonlist.append(self.button_add_region)
self.button_drawmouse = QPushButton('Brush')
self.buttonlist.append(self.button_drawmouse)
self.button_eraser = QPushButton('Eraser')
self.buttonlist.append(self.button_eraser)
self.label_brushsize = QLabel('Brush/Eraser radius:')
self.spinbox_brushsize = QSpinBox()
self.buttonlist.append(self.spinbox_brushsize)
self.button_exval = QPushButton('Exchange cell IDs')
self.buttonlist.append(self.button_exval)
self.button_showval = QCheckBox('Show cell IDs')
self.buttonlist.append(self.button_showval)
self.button_hidemask = QCheckBox('Hide mask')
self.buttonlist.append(self.button_hidemask)
self.button_split = QPushButton('Split cell')
self.buttonlist.append(self.button_split)
self.button_mergewithneighbors = QPushButton('Merge cells')
self.buttonlist.append(self.button_mergewithneighbors)
self.button_nextframe = QPushButton("Next time frame")
self.buttonlist.append(self.button_nextframe)
self.button_previousframe = QPushButton("Previous time frame")
self.buttonlist.append(self.button_previousframe)
self.button_cnn = QPushButton('Launch CNN')
self.buttonlist.append(self.button_cnn)
self.button_cellcorrespondence = QPushButton('Retrack')
self.buttonlist.append(self.button_cellcorrespondence)
self.button_changecellvalue = QPushButton('Change cell ID')
self.buttonlist.append(self.button_changecellvalue)
self.button_extractfluorescence = QPushButton('Extract')
self.buttonlist.append(self.button_extractfluorescence)
self.button_hide_show = QPushButton('CNN')
self.buttonlist.append(self.button_hide_show)
self.initUI()
def initUI(self):
"""Initializing the widgets contained in the window.
Especially, it creates the widget to plot the
pictures/masks by creating an object of the PlotCanvas class self.m.
Every interaction with the masks or the pictures (loading new
frames/editing the frames/masks) occurs through this class.
This method initializes all the buttons with the InitButtons file.
It connects the buttons to the functions that they should trigger,
it sets the shortcuts to the buttons, a tool tip,
eventually a message on the status bar when the user hovers
over the button, etc..
This function also sets all the layout in the InitLayout file. It
takes and places the widgets (buttons, canvas, toolbar).
The function initializes a Menu Bar to have a menu which can be
improved later on.
It sets a toolbar of the matplotlib library and hides it. But it allows
to connect to the functions of this toolbar through "homemade"
QPushButtons instead of the ones provided by matplotlib.
Finally, it sets a StatusBar which displays some text to describe
the use of some buttons, or to show that the program is working on
something (running the neural network, loading frames, etc...)
After all this has been initialized, the program is ready to be used.
"""
self._main = QtWidgets.QWidget()
self.setCentralWidget(self._main)
# Here our canvas is created where using matplotlib,
# one can plot data to display the pictures and masks.
self.m = PlotCanvas(self)
# Initialize all the buttons that are needed and the functions that are
# connected when the buttons are triggered.
InitButtons.Init(self)
InitLayout.Init(self)
# MENU, TOOLBAR AND STATUS BAR
# creates a menu just in case, some other functions can be added later
# in this menu.
# menubar = self.menuBar()
# self.fileMenu = menubar.addMenu('File')
# self.saveactionmenu = QAction('Save')
# self.fileMenu.addAction(self.saveactionmenu)
# self.saveactionmenu.triggered.connect(self.SaveMask)
# hide the toolbar and instead of the original buttons of matplotlib,
# QPushbuttons are used and are connected to the functions of the toolbar
# it is than easier to interact with these buttons (for example to
# to disable them and so on..)
self.Nvgtlbar = NavigationToolbar(self.m, self)
self.addToolBar(self.Nvgtlbar)
self.Nvgtlbar.hide()
# creates a status bar with user instructions
self.statusBar = QStatusBar()
self.setStatusBar(self.statusBar)
self.statusBarText = QLabel()
self.statusBar.addWidget(self.statusBarText)
self.show()
# -----------------------------------------------------------------------------
# FUNCTIONS LINKED TO NAVIGATION
# connect the functions of the toolbar to our custom QPushbuttons.
def ZoomTlbar(self):
"""The button_zoom is connected to the zoom function of the toolbar
already present in the matplotlib library.
Depending on the buttons that are active or checked, when the zoom
function is used, it does not disable all the buttons.
If the segment and threshold button are not checked or used
when the zoom button is clicked, it disables all the button
using self.Disable which disables everything except the button passed
in argument (in this case button_zoom).
If the zoom button is used while the segment button is checked,
it disables all the buttons (1st elif) except the segment button
but once it is finished (so the zoom button becomes unchecked)
then it enables only the editing buttons (as long as the segment
button is still checked) such as New Cell, Add Region, Eraser,
Brush,etc.. and the other toolbar buttons (3rd elif)
If the zoom button is clicked while the threshold button is checked,
it disables all the button except the threshold button (2nd elif).
Once the zoom button is unchecked, it enables the toolbar buttons
(4th elif)
In any other case, it just enables all the buttons again.
"""
self.Nvgtlbar.zoom()
if (self.button_zoom.isChecked()):
self.Disable(self.button_zoom)
else:
self.Enable(self.button_zoom)
def HomeTlbar(self):
"""
connects the home button to the home function of the matplotlib
toolbar. It sets the view to the original view (no zoom)
"""
self.Nvgtlbar.home()
def BackTlbar(self):
"""
It calls the back function of the matplotlib toolbar which sets the
view to the previous one (if the user does several zooms/pans,
this button allows to go back in the "history of views")
"""
self.Nvgtlbar.back()
def ForwardTlbar(self):
"""
It calls the forward function of the matplotlib toolbar which sets the
view to the next one (if the user does several zooms/pans,
this button allows to go forward in the "history of views"
"""
self.Nvgtlbar.forward()
def PanTlbar(self):
"""The button_pan is connected to the pan function of the toolbar
already present in the matplotlib library.
Depending on the buttons that are active or checked, when the pan
function is used, it does not disable all the buttons.
If the segment and threshold button are not checked or used
when the pan button is clicked, it disables all the button
using self.Disable which disables everything except the button passed
in argument (in this case button_pan).
If the pan button is used while the segment button is checked,
it disables all the buttons (1st elif) except the segment button
but once it is finished (so the zoom button becomes unchecked)
then it enables only the editing buttons (as long as the segment
button is still checked) such as New Cell, Add Region, Eraser,
Brush,etc.. and the other toolbar buttons (3rd elif)
If the pan button is clicked while the threshold button is checked,
it disables all the button except the threshold button (2nd elif).
Once the pan button is unchecked, it enables the toolbar buttons
(4th elif)
In any other case, it just enables all the buttons again.
"""
self.Nvgtlbar.pan()
if (self.button_pan.isChecked()):
self.Disable(self.button_pan)
else:
self.Enable(self.button_pan)
def ButtonFluo(self):
"""This function is called everytime the Extract Fluorescence button is
clicked (self.button_extractfluorescence).
"""
self.Disable(self.button_extractfluorescence)
self.WriteStatusBar('Extracting ...')
# Get last image with mask
for time_index in range(self.reader.sizet-1, -1, -1):
# Test if time has a mask
file = h5py.File(self.reader.hdfpath, 'r+')
time_exist = self.reader.TestTimeExist(time_index, self.FOVindex, file)
file.close()
if not time_exist:
continue
# load picture and sheet
image = self.reader.LoadImageChannel(time_index, self.FOVindex,
self.reader.default_channel)
mask = self.reader.LoadMask(time_index, self.FOVindex)
# Break if mask is non-empty
if mask.sum()>0:
break
if time_index==0:
QMessageBox(self, 'Error', 'No mask found')
self.Enable(self.button_extractfluorescence)
self.ClearStatusBar()
# Launch dialog with last image
dlg = extr.Extract(image, mask, self.reader.channel_names)
dlg.exec()
if dlg.exit_code == 1: # Fluorescence
self.ExtractFluo(dlg.cells, dlg.desel_cells, dlg.outfile, dlg.file_list)
elif dlg.exit_code == 2: # Mask
self.ExtractMask(dlg.desel_cells, dlg.outfile)
self.Enable(self.button_extractfluorescence)
self.ClearStatusBar()
def ExtractMask(self, desel_cells, outfile):
"""Extract the mask to the specified tiff file. Only take cells
specified by the cell_list"""
mask_list = []
for time_index in range(0, self.reader.sizet):
# Test if time has a mask
file = h5py.File(self.reader.hdfpath, 'r+')
time_exist = self.reader.TestTimeExist(time_index, self.FOVindex, file)
file.close()
if not time_exist:
continue
mask = self.reader.LoadMask(time_index, self.FOVindex)
for cell in desel_cells:
mask[mask==cell] = 0
mask_list.append(mask)
imageio.mimwrite(outfile, np.array(mask_list, dtype=np.uint16))
def ExtractFluo(self, sel_cells, desel_cells, csv_filename, channel_list):
"""This is the function that takes as argument the filepath to the xls
file and writes in the file.
It iterates over the different channels (or the sheets of the file,
each channel has one sheet.), and reads the image corresponding
to the time, field of view and channel index. It reads the already
existing file and makes a copy in which the data will be written in it.
The first step of calculating the data is to iterate through each
cell/segment of the mask (so each cell is a submatrix of one value
in the matrix of the mask).
For each of these value /cell, the area is extracted as being
the number of pixels corresponding to this cell/value.
(it is known from the microscope settings how to convert
the pixel in area).
The total intensity is just the value of the pixel and it is added over
all the pixels corresonding to the cell/value.
The mean is then calculated as being the total intensity divided by
the number of pixels (which here is equal to the area also).
With the mean it is then possible to calculate the variance of the
signal for one cell/value.
Then, it is checked if the value of the cell (cell number) already
exists in the first column, if it already exists it continues to
find the column corresponding to the time index where the values
should be written. It sets the flag to True such that it does not
write the cell as new one and adds it at the end of the column
If the value is not found in the cell number column (new cell or
first time writing in the file), the flag is False, thus it adds the
cell number at the end of the column.
It then saves the xls file.
"""
# List of cell properties
cell_list = []
for time_index in range(0, self.reader.sizet):
# Test if time has a mask
file = h5py.File(self.reader.hdfpath, 'r+')
time_exist = self.reader.TestTimeExist(time_index, self.FOVindex, file)
file.close()
if not time_exist:
continue
mask = self.reader.LoadMask(time_index, self.FOVindex)
for channel in channel_list:
# check if channel is in list of nd2 channels
try:
channel_ix = self.reader.channel_names.index(channel)
image = self.reader.LoadImageChannel(time_index, self.FOVindex, channel_ix)
# channel is a file
except ValueError:
image = load_image(channel, ix=time_index)
for val in np.unique(mask):
# bg is not cell
if val == 0:
continue
# disregard cells not in cell_list
if (val in desel_cells):
continue
# Calculate stats
stats = {'Cell': val,
'Time': time_index,
'Channel': channel}
stats = {**stats,
**self.cell_statistics(image, mask == val)}
stats['Disappeared in video'] = not (val in sel_cells)
cell_list.append(stats)
# Use Pandas to write csv
df = pd.DataFrame(cell_list)
df = df.sort_values(['Cell', 'Time'])
df.to_csv(csv_filename, index=False)
self.Enable(self.button_extractfluorescence)
self.ClearStatusBar()
def cell_statistics(self, image, mask):
"""Calculate statistics about cells. Passing None to image will
create dictionary to zeros, which allows to extract dictionary keys"""
if image is not None:
cell_vals = image[mask]
area = mask.sum()
tot_intensity = cell_vals.sum()
mean = tot_intensity/area if area > 0 else 0
var = np.var(cell_vals)
# Center of mass
y,x = mask.nonzero()
com_x = np.mean(x)
com_y = np.mean(y)
# PCA only works for multiple points
if area > 1:
pca = PCA().fit(np.array([y,x]).T)
pc1_x, pc1_y = pca.components_[0,:]
angle = np.arctan(pc1_y / pc1_x) / np.pi * 360
v1, v2 = pca.explained_variance_
len_maj = 4*np.sqrt(v1)
len_min = 4*np.sqrt(v2)
else:
angle = 0
len_maj = 1
len_min = 1
else:
mean = 0
var = np.nan
tot_intensity = 0
com_x = np.nan
com_y = np.nan
angle = np.nan
len_maj = np.nan
len_min = np.nan
return {'Area': area,
'Mean': mean,
'Variance': var,
'Total Intensity': tot_intensity,
'Center of Mass X': com_x,
'Center of Mass Y': com_y,
'Angle of Major Axis': angle,
'Length Major Axis': len_maj,
'Length Minor Axis': len_min}
# -----------------------------------------------------------------------------
# NEURAL NETWORK
def ShowHideCNNbuttons(self):
"""hide and show the buttons corresponding to the neural network.
this function is called by the button CNN which is hidden. But
if activated in the InitLayout.py then you can have a button
which hides the CNN buttons (which are now on the normal also
hidden...).
"""
if self.button_hide_show.isChecked():
self.button_cnn.setVisible(True)
else:
self.button_cnn.setVisible(False)
def LaunchBatchPrediction(self):
"""This function is called whenever the button Launch CNN is pressed.
It allows to run the neural network over a time range and selected
field of views.
It creates a dialog window with two entries, that define the time range
and a list where the user can select the desired fields of view.
Once it reads all the value, it calls the neural network function
inside of self.PredThreshSeg and it does the prediction of the neural
network, thresholds this prediction and then segments it.
"""
def reset():
self.m.UpdatePlots()
self.ClearStatusBar()
self.Enable(self.button_cnn)
self.EnableCNNButtons()
self.WriteStatusBar('Running the neural network...')
self.Disable(self.button_cnn)
# creates a dialog window from the LaunchBatchPrediction.py file
dlg = lbp.CustomDialog(self)
# this if tests if the user pressed 'ok' in the dialog window
if dlg.exec_() == QDialog.Accepted:
# it tests if the user has entered some values
# if not it ignores and returns.
if not (dlg.entry1.text()!= '' and dlg.entry2.text() != ''):
QMessageBox.critical(self, "Error", "No Time Specified")
reset()
return
# reads out the entry given by the user and converts the index
# to integers
time_value1 = int(dlg.entry1.text())
time_value2 = int(dlg.entry2.text())
# it tests if the first value is smaller or equal such that
# time_value1 is the lower range of the time range
# and time_value2 the upper boundary of the range.
if time_value1 > time_value2 :
QMessageBox.critical(self, "Error", 'Invalid Time Constraints')
reset()
return
# displays that the neural network is running
self.WriteStatusBar('Running the neural network...')
#it iterates in the list of the user-selected fields
#of view, to return the corresponding index, the function
#dlg.listfov.row(item) is used which gives an integer
if len(dlg.listfov.selectedItems())==0:
QMessageBox.critical(self, "Error", "No FOV Selected")
for item in dlg.listfov.selectedItems():
#iterates over the time indices in the range
for t in range(time_value1, time_value2+1):
#calls the neural network for time t and selected
#fov
if dlg.entry_threshold.text() != '':
thr_val = float(dlg.entry_threshold.text())
else:
thr_val = None
if dlg.entry_segmentation.text() != '':
seg_val = int(dlg.entry_segmentation.text())
else:
seg_val = 10
is_pc = dlg.radiobuttons.checkedId() == 1
self.PredThreshSeg(t, dlg.listfov.row(item), thr_val, seg_val,
is_pc)
# apply tracker if wanted and if not at first time
temp_mask = self.reader.CellCorrespondence(t, dlg.listfov.row(item))
self.reader.SaveMask(t,dlg.listfov.row(item), temp_mask)
self.ReloadThreeMasks()
reset()
def PredThreshSeg(self, timeindex, fovindex, thr_val, seg_val,
is_pc):
"""
This function is called in the LaunchBatchPrediction function.
This function calls the neural network function in the
InteractionDisk.py file and then thresholds the result
of the prediction, saves this thresholded prediction.
Then it segments the thresholded prediction and saves the
segmentation.
"""
print('--------- Segmenting field of view:',fovindex,'Time point:',timeindex)
im = self.reader.LoadOneImage(timeindex, fovindex)
try:
pred = self.LaunchPrediction(im, is_pc)
except ValueError:
QMessageBox.critical(self, 'Error',
'The neural network weight files could not '
'be found. Make sure to download them from '
'the link in the readme and put them into '
'the folder unet')
return
thresh = self.ThresholdPred(thr_val, pred)
seg = segment(thresh, pred, seg_val)
self.reader.SaveMask(timeindex, fovindex, seg)
print('--------- Finished segmenting.')
@staticmethod
def LaunchPrediction(im, is_pc, pretrained_weights=None):
"""It launches the neural neutwork on the current image and creates
an hdf file with the prediction for the time T and corresponding FOV.
"""
im = skimage.exposure.equalize_adapthist(im)
im = im*1.0;
pred = nn.prediction(im, is_pc, pretrained_weights)
return pred
@staticmethod
def ThresholdPred(thvalue, pred):
"""Thresholds prediction with value"""
if thvalue == None:
thresholdedmask = nn.threshold(pred)
else:
thresholdedmask = nn.threshold(pred, thvalue)
return thresholdedmask
def SelectChannel(self, index):
"""This function is called when the button to select different channels
is used. From the displayed list in the button, the chosen index
corresponnds to the same index in the list of channels from the reader.
So, it sets the default channel with the new index (called index below)
"""
self.reader.default_channel = index
# update the pictures using the same function as the one used to
# change the fields of view.
self.ChangeFOV()
def SelectFov(self, index):
"""This function is called when the button containing the list of
fields od view is used.
The index correspondds to the field of view selected in the list.
"""
# mask is automatically saved.
self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
self.FOVindex = index
# it updates the fov in the plot with the new index.
self.ChangeFOV()
def ChangeFOV(self):
"""
it changes the fov or channel according to the choice of the user
and it updates the plot shown and it initializes the new fov/channel
at t=0 by default.
"""
self.Tindex = 0
# load the image and mask for the current plot
self.m.currpicture = self.reader.LoadOneImage(self.Tindex,self.FOVindex)
self.m.plotmask = self.reader.LoadMask(self.Tindex,self.FOVindex)
# sets the image and the mask to 0 for the previous plot
self.m.prevpicture = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
self.m.prevplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
# load the image and the mask for the next plot, check if it exists
if self.Tindex+1 < self.reader.sizet:
self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+1, self.FOVindex)
self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
# enables the next frame button in case it was disabled when the
# fov/channel was changed
self.button_nextframe.setEnabled(True)
else:
self.m.nextpicture = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
self.m.nextplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
# disables the next frame button if the mask or the picture
# does not exist.
self.button_nextframe.setEnabled(False)
# once the images and masks are loaded into the variables, they are
# displaye in the gui.
self.m.UpdatePlots()
# disables the previous frame button in case it was active before
# changing fov/channel.
self.button_previousframe.setEnabled(False)
# updates the title of the plots to display the right time indices
# aboves the plots.
self.UpdateTitleSubplots()
# if the button to hide the mask was checked before changing fov/channel,
# it hides the mask again.
if self.button_hidemask.isChecked():
self.m.HideMask()
# the button to set the time index is also set to 0/default again.
self.button_timeindex.setText('')
# enables the neural network buttons if there is already an
# existing prediction for the current image.
self.EnableCNNButtons()
def ReloadThreeMasks(self):
"""
A function which replots all the masks at the current time and fov
indices. Needed after the batch prediction is completed to display
the result of the NN.
"""
if self.Tindex >= 0 and self.Tindex <= self.reader.sizet-1:
if self.Tindex == 0:
self.button_nextframe.setEnabled(True)
if self.Tindex < self.reader.sizet-1:
self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
else:
np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.m.prevplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
self.m.UpdatePlots()
self.button_previousframe.setEnabled(False)
elif self.Tindex == self.reader.sizet-1:
self.button_previousframe.setEnabled(True)
self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.m.nextplotmask = np.zeros([self.reader.sizey, self.reader.sizex], dtype = np.uint16)
self.m.UpdatePlots()
self.button_nextframe.setEnabled(False)
else:
self.button_nextframe.setEnabled(True)
self.button_previousframe.setEnabled(True)
self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
self.m.UpdatePlots()
self.UpdateTitleSubplots()
if self.button_hidemask.isChecked():
self.m.HideMask()
self.EnableCNNButtons()
else:
return
def ChangeTimeFrame(self):
"""This funcion is called whenever the user gives a new time index,
to jump to the new given index, once "enter" button is pressed.
"""
# it reads out the text in the button and converts it to an int.
newtimeindex = int(self.button_timeindex.text())
if newtimeindex >= 0 and newtimeindex <= self.reader.sizet-1:
self.reader.SaveMask(self.Tindex, self.FOVindex, self.m.plotmask)
self.Tindex = newtimeindex
if self.Tindex == 0:
self.button_nextframe.setEnabled(True)
self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+1,self.FOVindex)
self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
self.m.currpicture = self.reader.LoadOneImage(self.Tindex, self.FOVindex)
self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.m.prevpicture = np.zeros([self.reader.sizey, self.reader.sizex],
dtype = np.uint16)
self.m.prevplotmask = np.zeros([self.reader.sizey, self.reader.sizex],
dtype = np.uint16)
self.m.UpdatePlots()
self.button_previousframe.setEnabled(False)
elif self.Tindex == self.reader.sizet-1:
self.button_previousframe.setEnabled(True)
self.m.prevpicture = self.reader.LoadOneImage(self.Tindex-1, self.FOVindex)
self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
self.m.currpicture = self.reader.LoadOneImage(self.Tindex, self.FOVindex)
self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.m.nextpicture = np.zeros([self.reader.sizey, self.reader.sizex],
dtype = np.uint16)
self.m.nextplotmask = np.zeros([self.reader.sizey, self.reader.sizex],
dtype = np.uint16)
self.m.UpdatePlots()
self.button_nextframe.setEnabled(False)
else:
self.button_nextframe.setEnabled(True)
self.button_previousframe.setEnabled(True)
self.m.prevpicture = self.reader.LoadOneImage(self.Tindex-1, self.FOVindex)
self.m.prevplotmask = self.reader.LoadMask(self.Tindex-1, self.FOVindex)
self.m.currpicture = self.reader.LoadOneImage(self.Tindex, self.FOVindex)
self.m.plotmask = self.reader.LoadMask(self.Tindex, self.FOVindex)
self.m.nextpicture = self.reader.LoadOneImage(self.Tindex+1,self.FOVindex)
self.m.nextplotmask = self.reader.LoadMask(self.Tindex+1, self.FOVindex)
self.m.UpdatePlots()
self.UpdateTitleSubplots()
self.button_timeindex.clearFocus()
self.button_timeindex.setText(str(self.Tindex)+'/'+str(self.reader.sizet-1))
if self.button_hidemask.isChecked():
self.m.HideMask()
self.EnableCNNButtons()
else:
self.button_timeindex.clearFocus()
return
def CellCorrespActivation(self):
self.Disable(self.button_cellcorrespondence)
self.WriteStatusBar('Doing the cell correspondence')
if self.Tindex > 0:
self.m.plotmask = self.reader.CellCorrespondence(self.Tindex, self.FOVindex)
self.m.updatedata()
else:
pass
#self.m.plotmask = self.reader.LoadSeg(self.Tindex, self.FOVindex)
#self.m.updatedata()
self.Enable(self.button_cellcorrespondence)
self.button_cellcorrespondence.setChecked(False)
self.ClearStatusBar()
def ButtonSaveSegMask(self):
"""saves the segmented mask
"""
self.reader.SaveSegMask(self.Tindex, self.FOVindex, self.m.plotmask)
def ChangePreviousFrame(self):
"""This function is called when the previous frame buttons is pressed
and it tests if the buttons is enabled and if so it calls the
BackwardTime() function. It should avoid the let the user do multiple
clicks and that the function is then called afterwards several times,
once the frames and masks of the current time index have been loaded.
"""