This repository has been archived by the owner on Jul 2, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 302
/
Copy pathdemo.py
80 lines (67 loc) · 2.56 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import argparse
import matplotlib.pyplot as plt
import chainer
from chainercv.datasets import coco_bbox_label_names
from chainercv.datasets import coco_instance_segmentation_label_names
from chainercv.links import FasterRCNNFPNResNet101
from chainercv.links import FasterRCNNFPNResNet50
from chainercv.links import MaskRCNNFPNResNet101
from chainercv.links import MaskRCNNFPNResNet50
from chainercv import utils
from chainercv.visualizations import vis_bbox
from chainercv.visualizations import vis_instance_segmentation
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--model',
choices=('faster_rcnn_fpn_resnet50', 'faster_rcnn_fpn_resnet101',
'mask_rcnn_fpn_resnet50', 'mask_rcnn_fpn_resnet101'),
default='faster_rcnn_fpn_resnet50')
parser.add_argument('--gpu', type=int, default=-1)
parser.add_argument('--pretrained-model')
parser.add_argument(
'--dataset', choices=('coco',), default='coco')
parser.add_argument('image')
args = parser.parse_args()
if args.model == 'faster_rcnn_fpn_resnet50':
mode = 'bbox'
cls = FasterRCNNFPNResNet50
elif args.model == 'faster_rcnn_fpn_resnet101':
mode = 'bbox'
cls = FasterRCNNFPNResNet101
elif args.model == 'mask_rcnn_fpn_resnet50':
mode = 'instance_segmentation'
cls = MaskRCNNFPNResNet50
elif args.model == 'mask_rcnn_fpn_resnet101':
mode = 'instance_segmentation'
cls = MaskRCNNFPNResNet101
if args.dataset == 'coco':
if args.pretrained_model is None:
args.pretrained_model = 'coco'
if mode == 'bbox':
label_names = coco_bbox_label_names
elif mode == 'instance_segmentation':
label_names = coco_instance_segmentation_label_names
model = cls(n_fg_class=len(label_names),
pretrained_model=args.pretrained_model)
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
model.to_gpu()
img = utils.read_image(args.image)
if mode == 'bbox':
bboxes, labels, scores = model.predict([img])
bbox = bboxes[0]
label = labels[0]
score = scores[0]
vis_bbox(
img, bbox, label, score, label_names=label_names)
elif mode == 'instance_segmentation':
masks, labels, scores = model.predict([img])
mask = masks[0]
label = labels[0]
score = scores[0]
vis_instance_segmentation(
img, mask, label, score, label_names=label_names)
plt.show()
if __name__ == '__main__':
main()