diff --git a/R/blm_me.R b/R/blm_me.R index ba5e865..8c2984a 100644 --- a/R/blm_me.R +++ b/R/blm_me.R @@ -7,7 +7,7 @@ #' Denote \eqn{Y_i} be a binary response, \eqn{X_i} be a \eqn{q\times 1} covariate that is subject to spatial exposure measurement error, #' and \eqn{Z_i} be a \eqn{p\times 1} covariate without measurement error. #' Consider normal linear regression model, -#' \deqn{Y_i = \beta_0 + X_i^\top \beta_x + Z_i^\top \beta_z + \epsilon_i,\quad \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2_Y), \quad i=1,\dots,n,} +#' \deqn{Y_i = \beta_0 + X_i^\top \beta_X + Z_i^\top \beta_Z + \epsilon_i,\quad \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2_Y), \quad i=1,\dots,n,} #' and spatial exposure measurement error of \eqn{X_i} for \eqn{i=1,\dots,n} is incorporated into the model as a multivariate normal prior. #' For example when \eqn{q=1}, we have \eqn{n-}dimensional multivariate normal prior of \eqn{X = (X_1,\dots,X_n)^\top}, #' \deqn{(X_1,\dots,X_n)\sim N_n(\mu_X, Q_X^{-1}).} diff --git a/man/blm_me.Rd b/man/blm_me.Rd index 1e1a8e4..b99ba3e 100644 --- a/man/blm_me.Rd +++ b/man/blm_me.Rd @@ -52,7 +52,7 @@ Function \code{blm_me()} runs a Gibbs sampler to carry out posterior inference; Denote \eqn{Y_i} be a binary response, \eqn{X_i} be a \eqn{q\times 1} covariate that is subject to spatial exposure measurement error, and \eqn{Z_i} be a \eqn{p\times 1} covariate without measurement error. Consider normal linear regression model, -\deqn{Y_i = \beta_0 + X_i^\top \beta_x + Z_i^\top \beta_z + \epsilon_i,\quad \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2_Y), \quad i=1,\dots,n,} +\deqn{Y_i = \beta_0 + X_i^\top \beta_X + Z_i^\top \beta_Z + \epsilon_i,\quad \epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2_Y), \quad i=1,\dots,n,} and spatial exposure measurement error of \eqn{X_i} for \eqn{i=1,\dots,n} is incorporated into the model as a multivariate normal prior. For example when \eqn{q=1}, we have \eqn{n-}dimensional multivariate normal prior of \eqn{X = (X_1,\dots,X_n)^\top}, \deqn{(X_1,\dots,X_n)\sim N_n(\mu_X, Q_X^{-1}).}