-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexperiments.py
47 lines (38 loc) · 1.67 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import pandas as pd,numpy as np,scanpy as sc
import jscatter,scipy
def interactive_scatter_list(adata, var_list=[], embedding_list=['X_umap'],
):
_var_list = np.unique(var_list)
_embedding_list = np.unique(embedding_list)
_var_list = pd.Series([v for v in _var_list if v in adata.var_names])
mat = adata[:,_var_list].X
import scipy
if scipy.sparse.issparse(mat): mat= mat.todense();
expr_df = pd.DataFrame(mat,
index = adata.obs_names,
columns="_expr_"+_var_list)
list_of_df = []
for emb_name in _embedding_list:
df = pd.DataFrame(adata.obsm[emb_name][:,:2],columns=[emb_name+".1", emb_name+".2"])
list_of_df.append(df)
emb_df = pd.concat(list_of_df, axis=1)
emb_df.set_index(adata.obs_names, inplace=True)
df = pd.concat([expr_df, emb_df, adata.obs],axis=1)
df.set_index(adata.obs_names)
list_of_scatters = []
for var_name, emb_name in zip(var_list, embedding_list):
sca=jscatter.Scatter(data=df, x=emb_name+'.1', y=emb_name+'.2')
if var_name in adata.var_names:
var_name = "_expr_"+var_name
sca.color(by=var_name) #TODO: color configs vmin,vmax,palette
else:
sca.color(by=var_name) #TODO: color configs palette
list_of_scatters.append(sca)
return list_of_scatters
# draw interactive plots
lst = interactive_scatter_list(adata,
var_list=['Cd3d','ann220413' ],
embedding_list=['X_umap-t4.0-L1.0','X_umap-t4.0-L1.0'])
jscatter.link(lst, rows=1)
# get selected cells
lst[0].selection()