Skip to content

Latest commit

 

History

History
82 lines (76 loc) · 9.81 KB

ResultsCalibra.md

File metadata and controls

82 lines (76 loc) · 9.81 KB

Results Calibration

We random select 5 pairs of images from TID2013 for results calibration. Images are stored under ./dist_dir and ./ref_dir. Results of different metrics are saved under ./results_compare/. We also record the problems encountered during our reproduction of matlab scripts in MatlabReproduceNote

Method I03.bmp I04.bmp I06.bmp I08.bmp I19.bmp Speed (/image)
CKDN1(org) 0.2833 0.5766 0.6367 0.6579 0.5999
CKDN(ours imported) 0.2833 0.5766 0.6367 0.6579 0.5999
LPIPS(org) 0.7237 0.2572 0.0508 0.0521 0.4253
LPIPS(ours imported) 0.7237 0.2572 0.0508 0.0521 0.4253
DISTS(org) 0.4742 0.1424 0.0682 0.0287 0.3123
DISTS(ours imported) 0.4742 0.1424 0.0682 0.0287 0.3123
SSIM2(org) 0.6993 0.9978 0.9989 0.9669 0.6519
SSIM(ours imported) 0.6997 0.9978 0.9989 0.9671 0.6521
MS-SSIM3(org) 0.6733 0.9996 0.9998 0.9566 0.8462
MS-SSIM(ours imported) 0.6698 0.9993 0.9996 0.9567 0.8418
CW-SSIM9(org) 0.2763 0.9996 1.0000 0.9068 0.8658
CW-SSIM(ours imported) 0.2782 0.9995 1.0000 0.9065 0.8646
PSNR4(org) 21.11 20.99 27.01 23.30 21.62
PSNR(ours imported) 21.11 20.99 27.01 23.30 21.62
FSIM(org) 0.6890 0.9702 0.9927 0.9575 0.8220
FSIM(ours imported) 0.6891 0.9702 0.9927 0.9575 0.8220
VIF5(org) 0.0172 0.9891 0.9924 0.9103 0.1745
VIF(ours imported) 0.0172 0.9891 0.9924 0.9103 0.1745
GMSD6(org) 0.2203 0.0005 0.0004 0.1346 0.2050
GMSD(ours imported) 0.2203 0.0005 0.0004 0.1346 0.2050
NLPD7(org) 0.5616 0.0195 0.0159 0.3028 0.4326
NLPD(ours imported) 0.5616 0.0139 0.0110 0.3033 0.4335
VSI8(opt) 0.9139 0.9620 0.9922 0.9571 0.9262
VSI(ours imported) 0.9244 0.9497 0.9877 0.9541 0.9348
MAD10(ours imported) 195.2796 80.8379 30.3918 84.3542 202.2371
NIQE11(org) 15.7536 3.6549 3.2355 3.1840 8.6352
NIQE(ours imported) 15.6530 3.6541 3.2343 3.2076 9.1060
ILNIQE(org) 113.4801 23.9968 19.9750 22.4493 56.6721 10s
ILNIQE(ours imported) 115.6144 24.0634 19.7497 22.3253 54.7657 1s
BRISQUE12(org) 94.6421 -0.1076 0.9929 5.3583 72.2617
BRISQUE(ours imported) 94.6448 -0.1103 1.0772 5.1418 66.8405
MUSIQ/AVA(org) 3.398 5.648 4.635 5.186 4.128
MUSIQ/AVA(ours imported)(org)13 3.408 5.693 4.696 5.196 4.195
MUSIQ/koniq10k(org) 12.494 75.332 73.429 75.188 36.938
MUSIQ/koniq10k(ours imported) 12.477 75.776 73.745 75.460 38.02
MUSIQ/paq2piq(org) 46.035 72.660 73.625 74.361 69.006
MUSIQ/paq2piq(ours imported) 46.018 72.665 73.765 74.387 69.721
MUSIQ/spaq(org) 17.685 70.492 78.740 79.015 49.105
MUSIQ/spaq(ours imported) 17.680 70.653 79.036 79.318 50.452
NRQM 1.3894 8.9394 8.9735 6.8290 6.3120 10s
NRQM (ours imported) 1.3931 8.9418 8.9721 6.8309 6.3031 0.4s
PI14 11.9235 3.0720 2.6180 2.8074 6.7713
PI (ours imported ) 11.9286 3.0730 2.6356 2.7979 6.9545
Paq2piq 44.1340 73.6015 74.3297 76.8748 70.9153
Paq2piq (ours imported) 44.1340 73.6015 74.3297 76.8748 70.9153
PieAPP 4.2976 3.9088 2.2620 1.4274 3.4188
PieAPP (ours imported) 4.2976 3.9088 2.2620 1.4274 3.4188
FID15 225.3678 (legacy_pytorch) 220.5819 (clean)
FID (ours imported) 225.3679 (legacy_pytorch) 220.5819 (clean)
InceptionScore 16 2.8300 (splits=1)
InceptionScore (ours imported) 2.8303 (splits=1)

Notice

[1] CKDN used degraded images as references in the original paper.
[2] The original SSIM matlab script downsample the image when larger than 256. We remove such constraint. We use rgb2gray function as input of original SSIM matlab script
[3] We use rgb2gray function as input of original MS-SSIM matlab script.
[4] The original PSNR code refers to scikit-learn package with RGB 3-channel calculation (from skimage.metrics import peak_signal_noise_ratio).
[5] We use rgb2gray function as input of original VIF matlab script.
[6] We use rgb2gray function as input of original GMSD matlab script.
[7] We use rgb2gray function as input of original NLPD matlab script, and try to mimic 'imfilter' and 'conv2' functions in matlab.
[8] Since official matlab code is not available, we use the implement of IQA-Optimization for comparison. The differences are described as follows. After modifying the above implementation, the results are basically the same.

  • we use interpolation to transform the image to 256*256 and then back to the image size after calculating VSMap in the SDSP function
  • rgb2lab's function is slightly different
  • the range of ours is -127 to 128 when constructing SDMap, and the value of optimization is -128 to 127
  • different down-sampling operations

[9] We use rgb2gray function as input of original CW-SSIM matlab script. The number of level is 4 and orientation is 8.
[10] We use rgb2yiq function as input, and the original MAD matlab script is not available.
[11] We use rgb2gray function as input of original NIQE matlab script.
[12] We use rgb2gray function images as input of original BRISQUE matlab script.
[13] Results have about ±2% difference with tensorflow codes because of some detailed implementation differences between TensorFlow and PyTorch. For example, PyTorch does not support gaussian interpolation, different default epsilon value, etc.
[14] Perceptual Index (PI) use YCBCR color space and crop border with size 4.
[15] We use codes from the clean-fid project.
[15] We use codes from the torch-fidelity project with "fidelity --gpu 0 --samples-find-ext bmp,BMP --isc --isc-splits 1 --input1 ResultsCalibra/dist_dir/".