-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimplify.go
270 lines (242 loc) · 7.55 KB
/
simplify.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package imports
import (
"go/ast"
"go/token"
"reflect"
"unicode"
"unicode/utf8"
)
type simplifier struct{}
func (s simplifier) Visit(node ast.Node) ast.Visitor {
switch n := node.(type) {
case *ast.CompositeLit:
// array, slice, and map composite literals may be simplified
outer := n
var keyType, eltType ast.Expr
switch typ := outer.Type.(type) {
case *ast.ArrayType:
eltType = typ.Elt
case *ast.MapType:
keyType = typ.Key
eltType = typ.Value
}
if eltType != nil {
var ktyp reflect.Value
if keyType != nil {
ktyp = reflect.ValueOf(keyType)
}
typ := reflect.ValueOf(eltType)
for i, x := range outer.Elts {
px := &outer.Elts[i]
// look at value of indexed/named elements
if t, ok := x.(*ast.KeyValueExpr); ok {
if keyType != nil {
s.simplifyLiteral(ktyp, keyType, t.Key, &t.Key)
}
x = t.Value
px = &t.Value
}
s.simplifyLiteral(typ, eltType, x, px)
}
// node was simplified - stop walk (there are no subnodes to simplify)
return nil
}
case *ast.SliceExpr:
// a slice expression of the form: s[a:len(s)]
// can be simplified to: s[a:]
// if s is "simple enough" (for now we only accept identifiers)
//
// Note: This may not be correct because len may have been redeclared in another
// file belonging to the same package. However, this is extremely unlikely
// and so far (April 2016, after years of supporting this rewrite feature)
// has never come up, so let's keep it working as is (see also #15153).
if n.Max != nil {
// - 3-index slices always require the 2nd and 3rd index
break
}
if s, _ := n.X.(*ast.Ident); s != nil && s.Obj != nil {
// the array/slice object is a single, resolved identifier
if call, _ := n.High.(*ast.CallExpr); call != nil && len(call.Args) == 1 && !call.Ellipsis.IsValid() {
// the high expression is a function call with a single argument
if fun, _ := call.Fun.(*ast.Ident); fun != nil && fun.Name == "len" && fun.Obj == nil {
// the function called is "len" and it is not locally defined; and
// because we don't have dot imports, it must be the predefined len()
if arg, _ := call.Args[0].(*ast.Ident); arg != nil && arg.Obj == s.Obj {
// the len argument is the array/slice object
n.High = nil
}
}
}
}
// Note: We could also simplify slice expressions of the form s[0:b] to s[:b]
// but we leave them as is since sometimes we want to be very explicit
// about the lower bound.
// An example where the 0 helps:
// x, y, z := b[0:2], b[2:4], b[4:6]
// An example where it does not:
// x, y := b[:n], b[n:]
case *ast.RangeStmt:
// - a range of the form: for x, _ = range v {...}
// can be simplified to: for x = range v {...}
// - a range of the form: for _ = range v {...}
// can be simplified to: for range v {...}
if isBlank(n.Value) {
n.Value = nil
}
if isBlank(n.Key) && n.Value == nil {
n.Key = nil
}
}
return s
}
func (s simplifier) simplifyLiteral(typ reflect.Value, astType, x ast.Expr, px *ast.Expr) {
ast.Walk(s, x) // simplify x
// if the element is a composite literal and its literal type
// matches the outer literal's element type exactly, the inner
// literal type may be omitted
if inner, ok := x.(*ast.CompositeLit); ok {
if match(nil, typ, reflect.ValueOf(inner.Type)) {
inner.Type = nil
}
}
// if the outer literal's element type is a pointer type *T
// and the element is & of a composite literal of type T,
// the inner &T may be omitted.
if ptr, ok := astType.(*ast.StarExpr); ok {
if addr, ok := x.(*ast.UnaryExpr); ok && addr.Op == token.AND {
if inner, ok := addr.X.(*ast.CompositeLit); ok {
if match(nil, reflect.ValueOf(ptr.X), reflect.ValueOf(inner.Type)) {
inner.Type = nil // drop T
*px = inner // drop &
}
}
}
}
}
func isBlank(x ast.Expr) bool {
ident, ok := x.(*ast.Ident)
return ok && ident.Name == "_"
}
func Simplify(f *ast.File) {
// remove empty declarations such as "const ()", etc
removeEmptyDeclGroups(f)
var s simplifier
ast.Walk(s, f)
}
func removeEmptyDeclGroups(f *ast.File) {
i := 0
for _, d := range f.Decls {
if g, ok := d.(*ast.GenDecl); !ok || !isEmpty(f, g) {
f.Decls[i] = d
i++
}
}
f.Decls = f.Decls[:i]
}
func isEmpty(f *ast.File, g *ast.GenDecl) bool {
if g.Doc != nil || g.Specs != nil {
return false
}
for _, c := range f.Comments {
// if there is a comment in the declaration, it is not considered empty
if g.Pos() <= c.Pos() && c.End() <= g.End() {
return false
}
}
return true
}
// -----------------------------------------------------------------------------
// rewrite.go logic
// Values/types for special cases.
var (
identType = reflect.TypeOf((*ast.Ident)(nil))
objectPtrType = reflect.TypeOf((*ast.Object)(nil))
positionType = reflect.TypeOf(token.NoPos)
callExprType = reflect.TypeOf((*ast.CallExpr)(nil))
)
func isWildcard(s string) bool {
rune, size := utf8.DecodeRuneInString(s)
return size == len(s) && unicode.IsLower(rune)
}
// match reports whether pattern matches val,
// recording wildcard submatches in m.
// If m == nil, match checks whether pattern == val.
func match(m map[string]reflect.Value, pattern, val reflect.Value) bool {
// Wildcard matches any expression. If it appears multiple
// times in the pattern, it must match the same expression
// each time.
if m != nil && pattern.IsValid() && pattern.Type() == identType {
name := pattern.Interface().(*ast.Ident).Name
if isWildcard(name) && val.IsValid() {
// wildcards only match valid (non-nil) expressions.
if _, ok := val.Interface().(ast.Expr); ok && !val.IsNil() {
if old, ok := m[name]; ok {
return match(nil, old, val)
}
m[name] = val
return true
}
}
}
// Otherwise, pattern and val must match recursively.
if !pattern.IsValid() || !val.IsValid() {
return !pattern.IsValid() && !val.IsValid()
}
if pattern.Type() != val.Type() {
return false
}
// Special cases.
switch pattern.Type() {
case identType:
// For identifiers, only the names need to match
// (and none of the other *ast.Object information).
// This is a common case, handle it all here instead
// of recursing down any further via reflection.
p := pattern.Interface().(*ast.Ident)
v := val.Interface().(*ast.Ident)
return p == nil && v == nil || p != nil && v != nil && p.Name == v.Name
case objectPtrType, positionType:
// object pointers and token positions always match
return true
case callExprType:
// For calls, the Ellipsis fields (token.Position) must
// match since that is how f(x) and f(x...) are different.
// Check them here but fall through for the remaining fields.
p := pattern.Interface().(*ast.CallExpr)
v := val.Interface().(*ast.CallExpr)
if p.Ellipsis.IsValid() != v.Ellipsis.IsValid() {
return false
}
}
p := reflect.Indirect(pattern)
v := reflect.Indirect(val)
if !p.IsValid() || !v.IsValid() {
return !p.IsValid() && !v.IsValid()
}
switch p.Kind() {
case reflect.Slice:
if p.Len() != v.Len() {
return false
}
for i := 0; i < p.Len(); i++ {
if !match(m, p.Index(i), v.Index(i)) {
return false
}
}
return true
case reflect.Struct:
for i := 0; i < p.NumField(); i++ {
if !match(m, p.Field(i), v.Field(i)) {
return false
}
}
return true
case reflect.Interface:
return match(m, p.Elem(), v.Elem())
}
// Handle token integers, etc.
return p.Interface() == v.Interface()
}