Skip to content

Files

Latest commit

61f9f12 · Jun 15, 2023

History

History

2d_examples

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jun 15, 2023
Jun 15, 2023
Jun 15, 2023
Jun 15, 2023
Jun 15, 2023
Jun 15, 2023
Jun 15, 2023
Jun 15, 2023
Jun 15, 2023
Jun 15, 2023
Jun 15, 2023
Jun 15, 2023
Jun 15, 2023

Two-Dimensional Examples

This folder contains the code implementation of the two-dimensional experiments in Section 3.2 of the paper On Investigating the Conservative Property of Score-Based Generative Models.

training

Usage

Train and evaluate models using the command with the following format.

python main.py --mode {$(1)} --workdir {$(2)} --config {$(3)}
  • (1) mode: is set as train or eval for training or evaluation.
  • (2) workdir: the directory created for saving the experimental results such as visualized examples and checkpoints.
  • (3) config: the configuration file that specifies the hyper-parameters.

Examples of Training Commands

  • Train a constrained score-based model (CSBM)
python3 main.py --workdir checkerboard_csbm --mode train --config configs/csbm/checkerboard_config.py
  • Train an unconstrained score-based model (USBM)
python3 main.py --workdir checkerboard_usbm --mode train --config configs/usbm/checkerboard_config.py
  • Train a quasi-conservative score-based model (QCSBM)
python3 main.py --workdir checkerboard_qcsbm --mode train --config configs/qcsbm/checkerboard_config.py

Examples of Evaluation Commands

  • Evaluate the negative log likelihood (NLL)
python3 main.py --workdir checkerboard_qcsbm --mode eval --type nll --config configs/qcsbm/checkerboard_config.py --restore results/checkerboard_qcsbm/checkpoints/checkpoint_4000.pth
  • Evaluate the score errors
python3 main.py --workdir checkerboard_qcsbm --mode eval --type score_err --config configs/qcsbm/checkerboard_config.py --restore results/checkerboard_qcsbm/checkpoints/checkpoint_4000.pth
  • Evaluate the sampling performance
python3 main.py --workdir checkerboard_qcsbm --mode eval --type sampling --config configs/qcsbm/checkerboard_config.py --restore results/checkerboard_qcsbm/checkpoints/checkpoint_4000.pth