-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.qmd
838 lines (612 loc) · 27.3 KB
/
index.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
---
title: "Designing Domain-Specific Data Science Materials and Leveraging Long-Term Practice"
subtitle: "PyCon 2022 Education Summit"
author: "[Daniel Chen](https://daniel.rbind.io/)"
date: "Thursday, April 28, 2022"
format:
revealjs:
footer: "[Daniel Chen](https://daniel.rbind.io/). @chendaniely. Using [Quarto](https://quarto.org/docs/presentations/revealjs/index.html). Slides: [https://github.com/chendaniely/2022-04-28-pycon2022-eduSummit-practice](https://github.com/chendaniely/2022-04-28-pycon2022-eduSummit-practice)"
theme: ["custom.scss"]
slide-number: c/t
show-slide-number: all
hash-type: number
---
## Goshute {.center}
<style>
div.footnote {
font-size: 10px;
}
</style>
<img src="img/intro/goshute.png" alt="map of native lands in Salt Lake City, Utah, USA area" />
::: footnote
- https://native-land.ca/
:::
## Tutelo {.center}
<img src="img/intro/tutelo.png" alt="map of native lands in eastern USA with arrow pointed to Blacksburg/Roanoke Virginia area in the Tutelo Tribe" />
::: footnote
- https://native-land.ca/
:::
## Thank You
<blockquote class="twitter-tweet"><p lang="en" dir="ltr">I’m developing a presentation for <a href="https://twitter.com/seruff_?ref_src=twsrc%5Etfw">@seruff_</a> using <a href="https://twitter.com/quarto_pub?ref_src=twsrc%5Etfw">@quarto_pub</a> presentations.<br>I started to implement a similar theme as the xaringan <a href="https://twitter.com/RLadiesGlobal?ref_src=twsrc%5Etfw">@RLadiesGlobal</a> theme made by <a href="https://twitter.com/apreshill?ref_src=twsrc%5Etfw">@apreshill</a> !<br>If anyone wants to help to improve it, It would be awesome 💜 <a href="https://twitter.com/hashtag/rladies?src=hash&ref_src=twsrc%5Etfw">#rladies</a> <a href="https://twitter.com/hashtag/RStats?src=hash&ref_src=twsrc%5Etfw">#RStats</a> <a href="https://t.co/xps1v49Ku4">https://t.co/xps1v49Ku4</a> <a href="https://t.co/sK9d3X3unE">pic.twitter.com/sK9d3X3unE</a></p>— Beatriz Milz (@BeaMilz) <a href="https://twitter.com/BeaMilz/status/1515327145471578120?ref_src=twsrc%5Etfw">April 16, 2022</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
## Daniel Chen, PhD, MPH {.center}
:::::: columns
::: {.column width="40%"}
<center>
<a href='mailto:[email protected]'><i class="far fa-envelope"></i></a>
<a href='https://twitter.com/chendaniely'><i class="fab fa-twitter"></i>
<a href='https://github.com/chendaniely'><i class="fab fa-github"></i></a>
<a href='https://twitch.tv/chendaniely'><i class="fab fa-twitch"></i></a>
@chendaniely
<img src="img/foto.jpeg" alt="Daniel Chen" style="border-radius: 50%; max-width: 70%;"/>
</center>
:::
::: {.column width="60%"}
- Postdoctoral Research and Teaching Fellow, UBC, MDS-Vancouver
- Data Science Educator, RStudio, PBC ([RStudio Academy](https://www.rstudio.com/academy/))
- The Carpentries
- Author, [Pandas for Everyone](https://www.pearson.com/us/higher-education/program/Chen-Pandas-for-Everyone-Python-Data-Analysis/PGM335102.html)
:::
::::::
## Thank You Again
https://us.pycon.org/2021/summits/education-training/
<iframe width="560" height="315" src="https://www.youtube.com/embed/TmLnX7opisQ?start=3148" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<!--
# Data Science Education
## Current Status of Data Science Education
```{r}
knitr::include_graphics("./img/010-ds_edu/song-2016-bachelors_masters.png")
```
::: footnote
- Song IY, Zhu Y. Big data and data science: what should we teach? Expert Systems. 2016;33(4):364-373. doi:https://doi.org/10.1111/exsy.12130
:::
## Most People Are Missing "Data" Classes
```{r}
knitr::include_graphics("./img/010-ds_edu/kross-2020-dedicated_courses.png")
```
::: footnote
- Kross S, Peng RD, Caffo BS, Gooding I, Leek JT. The Democratization of Data Science Education. The American Statistician. 2020;74(1):1-7. doi:10.1080/00031305.2019.1668849
:::
## The Data Science Cycle
```{r}
knitr::include_graphics("./img/010-ds_edu/data_science_cycles.png")
```
::: footnote
- Bargagliotti A, Franklin C, Arnold P, et al. Pre-K-12 Guidelines for Assessment and Instruction in Statistics Education II (GAISE II): A Framework for Statistics and Data Science Education. American Statistical Association 2020.
- Chen D. Data science figure. Published online December 2020. https://github.com/chendaniely/data_science-figure
- D’Ignazio C, Bhargava R. DataBasic: Design Principles, Tools and Activities for Data Literacy Learners. The Journal of Community Informatics. 2016;12(3). doi:10.15353/joci.v12i3.3280
- Wickham H, Grolemund G. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data. O’Reilly Media; 2016. https://r4ds.had.co.nz/
:::
-->
# Data Science in the Biomedical Science
## Data Science Programs Are Too General
- Data science programs target **single broad audiences**
- Opportunity to **branch out** to different disciplines
- Democratization of data science education enables more **domain specific** learning materials
## Informatics Interest Outpace Opportunities
```{r}
knitr::include_graphics("./img/020-ds-biomed//banerjee-2015-interest_outpace_opportunities.png")
```
- Students who are interested in a clinical informatics related career
- Not aware of training opportunities
- Need to increase: quantity, quality, and publicity
::: footnote
- American Medical Association. Accelerating Change in Medical Education. American Medical Association. Accessed February 10, 2021. https://www.ama-assn.org/education/accelerating-change-medical-education
- Banerjee R, George P, Priebe C, Alper E. Medical student awareness of and interest in clinical informatics. Journal of the American Medical Informatics Association. 2015;22(e1):e42-e47. doi:10.1093/jamia/ocu046
:::
## Excel
```{r}
knitr::include_graphics("./img/020-ds-biomed/excel-problem.png")
```
::: footnote
- Lewis D. Autocorrect errors in Excel still creating genomics headache. Nature. Published online August 13, 2021. doi:10.1038/d41586-021-02211-4
- Vincent J. Scientists rename human genes to stop Microsoft Excel from misreading them as dates. The Verge. Published August 6, 2020. Accessed December 8, 2021. https://www.theverge.com/2020/8/6/21355674/human-genes-rename-microsoft-excel-misreading-dates
:::
## Consequences of Reproducibility Failures
```{r}
knitr::include_graphics("./img/020-ds-biomed/ostblom-2021-reproducibility_failures.png")
```
::: footnote
- Aboumatar, Hanan and Robert A. Wise (Oct. 2019). “Notice of Retraction. Aboumatar et al. Effect of a Program Combining Transitional Care and Long-Term Self-Management Support on Outcomes of Hospitalized Patients With Chronic Obstructive Pulmonary Disease: A Randomized Clinical Trial. JAMA. 2018;320(22):2335-2343.” In: JAMA 322.14, pp. 1417–1418. issn: 0098-7484. doi: 10.1001/jama.2019.11954
- Kelion, Leo (Oct. 2020). “Excel: Why Using Microsoft’s Tool Caused Covid-19 Results to Be Lost”. en-GB. In: BBC News.
- Ostblom J, Timbers T. Opinionated practices for teaching reproducibility: motivation, guided instruction and practice. arXiv:210913656 [cs, stat]. Published online September 17, 2021. Accessed November 30, 2021. http://arxiv.org/abs/2109.13656
- Wallensteen, Lena et al. (2018). “Retraction notice to" Evaluation of behavioral problems after prenatal dexamethasone treatment in Swedish adolescents at risk of CAH"[Hormones and Behavior 85C (2016) 5-11]”. In: Hormonesand behavior 103, p. 140.
- Whitehouse, Harvey et al. (July 2021). “Retraction Note: Complex Societies Precede Moralizing Gods throughout World History”. en. In: Nature 595.7866, pp. 320–320. issn: 1476-4687. doi: 10.1038/s41586-021-03656-3.
- Zeeberg, Barry R et al. (2004). “Mistaken identifiers: gene name errors can be introduced inadvertently when using Excel in bioinformatics”. In: BMC bioinformatics 5.1, pp. 1–6.
- Ziemann, Mark, Yotam Eren, and Assam El-Osta (2016). “Gene name errors are widespread in the scientific literature”. In: Genome biology 17.1, pp. 1–3
:::
## Successful R-based Test Package Submitted to FDA
- Nov 22nd, 2021
- R Consortium R submission Pilot 1 Project
- R-language based submission package
- meet the needs and the expectations of the FDA reviewers
- assessing code review
- analyses reproducibility.
::: footnote
- R Consortium. Successful R-based Test Package Submitted to FDA. R Consortium. Published December 8, 2021. Accessed December 8, 2021. https://www.r-consortium.org/blog/2021/12/08/successful-r-based-test-package-submitted-to-fda. RConsortium.
- RConsortium/Submissions-Pilot1-to-Fda. R Consortium; 2021. Accessed December 8, 2021. https://github.com/RConsortium/submissions-pilot1-to-fda
:::
## Backward Design Learning Materials
1. Identify your learners (learner persona)
2. Plan out your lesson content (concept maps)
3. Define overall goal (summative assessment)
4. Break down the goal (formative assessment)
5. Outline the course
6. Write a summary of the course
::: footnote
- Wilson G. Teaching Tech Together: How to Make Your Lessons Work and Build a Teaching Community around Them. Taylor & Francis; 2019. http://teachtogether.tech
:::
# Identification of Biomedical Data Science Learner Persons
Implications and Lessons Learned for Domain-Specific Data Science Curriculum
## What are Personas?
- Come from product design
- Detailed description of an imaginary person
- Embodies assumptions of the user and product
- Cannot and should not represent every possible user
::: footnote
- Pruitt J, Adlin T. The Persona Lifecycle: Keeping People in Mind Throughout Product Design. 1st edition. Morgan Kaufmann; 2006.
:::
## Why use personas in education?
- Minimize **discrepancies** on how people understand and communicate about users
- Make implicit assumptions **explicit**
- Stay focused on the **users** (user centric design)
::: footnote
- Pruitt J, Adlin T. The Persona Lifecycle: Keeping People in Mind Throughout Product Design. 1st edition. Morgan Kaufmann; 2006.
:::
## Creating a "Wrong" Persona
- Still backed by data
- "Product"is still consistent
- Personas are a work in progress
::: footnote
- Pruitt J, Adlin T. The Persona Lifecycle: Keeping People in Mind Throughout Product Design. 1st edition. Morgan Kaufmann; 2006.
:::
## Creating Learner Personas {.smaller}
- Self-assessment survey (33 questions)
- Clustered to identify personas (23 Questions)
- 2 Waves (N=67): Summer 2020 (N=51) + Summer 2021
1. Demographics (6)
1. Programs Used in the Past (1)
1. *Programming Experience (6)
1. *Data Cleaning and Processing Experience (4)
1. *Project and Data Management (2)
1. *Statistics (4)
1. Workshop Framing and Motivation (3)
1. *Summary Likert (7)
::: footnote
- Ambrose SA, Bridges MW, DiPietro M, Lovett MC, Norman MK. How Learning Works: Seven Research-Based Principles for Smart Teaching. John Wiley & Sons; 2010.<br />
- Jordan KL, Michonneau F. Analysis of The Carpentries Long-Term Surveys (April 2020). Zenodo; 2020. doi:10.5281/zenodo.3728205.<br />
- Jordan K, Michonneau F, Weaver B. Analysis of Software and Data Carpentry’s Pre- and Post-Workshop Surveys. Zenodo; 2018. doi:10.5281/zenodo.1325464.<br />
- Wilson G. Teaching Tech Together: How to Make Your Lessons Work and Build a Teaching Community around Them. Taylor & Francis; 2019. http://teachtogether.tech
:::
## Ocupation
```{r}
knitr::include_graphics("./img/030-personas/occupation.png")
```
<!--
## General Attitudes: Summary Likert (7)
```{r}
knitr::include_graphics("./img/030-personas/summary_likert_all.png")
```
## Survey Validation: Selecting items for EFA {.smaller}
:::::: columns
::: {.column width="40%"}
- 23 item
- 67 responses
- ~10 responses per item
- 14 items for Exploratory Factor Analysis (EFA)
- 20\% "significant" variables (wanted Q6)
- "Significant":
- `p ≤ 0.05` and
- `|⍴| ≥ 0.5`
:::
::: {.column width="60%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/030-personas/efa-selection.png")
```
:::
::::::
::: footnote
- Corrplot: https://github.com/chendaniely/dissertation-analysis/blob/master/analysis/020-validation/020-005-fa.Rmd#L143
:::
## Exploratory Factor Analysis {.smaller}
:::::: columns
::: {.column width="40%"}
- Method: tenBerge
- Rotation: Varimax
- Rotation did not affect results
- Factors: 3
- Tried 2 -4
- Factoring method: Principal axis factoring
- Data was not normal for maximum likelihood
- Shapiro-Wilk normality test
:::
::: {.column width="60%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/030-personas/efa-elbow.png")
```
:::
::::::
::: footnote
- Using `psych::fa()`: https://github.com/chendaniely/dissertation-analysis/blob/master/analysis/020-validation/020-005-fa.Rmd#L287
- Using `stats::factanal()`: https://github.com/chendaniely/dissertation-analysis/blob/master/analysis/020-validation/020-005-fa.Rmd#L592
:::
-->
## EFA: Factor Loadings + Cronbah’s alpha {.smaller}
:::::: columns
::: {.column width="40%"}
- PA1: Programming experience (7)
- 𝛼 = 0.96
- PA2: Programming for data analysis (2)
- 𝛼 = 0.98
- PA3: Solving technical problems (2)
- 𝛼 = 0.75
:::
::: {.column width="60%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/030-personas/efa-loadings.png")
```
- EFA Factor loadings < 0.5 are supressed
- Cronbah’s 𝛼, loadings ≥ 0.6 were used
:::
::::::
::: footnote
- Alpha caluclated using `psych::alpha()`: https://github.com/chendaniely/dissertation-analysis/blob/master/analysis/020-validation/020-010-cronbah.Rmd#L76
:::
## Hierarchical Clustering for Personas
```{r}
knitr::include_graphics("./img/030-personas/dendrogram-3.png")
```
## Identifying Personas: Programming Experience
```{r}
knitr::include_graphics("./img/030-personas/q3.4-group.png")
```
## Identifying Personas: Programming for Analysis
```{r}
knitr::include_graphics("./img/030-personas/q7.2_7-group.png")
```
## Identifying Personas: Solving technical problems
```{r}
knitr::include_graphics("./img/030-personas/q4.2-group.png")
```
## Identifying Personas: Statistics
```{r}
knitr::include_graphics("./img/030-personas/q6.2-group.png")
```
## Identifying Personas: Excel
```{r}
knitr::include_graphics("./img/030-personas/q4.1-group.png")
```
## Hierarchical Clustering for Personas
```{r}
knitr::include_graphics("./img/030-personas/dendrogram-3-labeled.png")
```
## Overall Persona Differences
1. Ash Academic
2. Samir Student
3. Clare Clinician
```{r}
knitr::include_graphics("./img/030-personas/persona-overall.png")
```
::: footnote
- `stats::hclust()` for clustering: https://github.com/chendaniely/dissertation-analysis/blob/master/analysis/030-persona/03-pca_clustering.Rmd#L191
- `stats:cutree()` for cutting the tree: https://github.com/chendaniely/dissertation-analysis/blob/master/analysis/030-persona/03-pca_clustering.Rmd#L222
:::
## Primary Target User
```{r}
knitr::include_graphics("./img/030-personas/persona-clare_clinician.png")
```
::: footnote
- RStudio. Learner Personas. Published 2019. https://rstudio-education.github.io/learner-personas/
:::
## Biomedical Learner Persona Survey Conclusions
1. First step in backward lesson decision: identify learners (learner personas)
2. Have a way to create learner personas for the biomedical data science
3. Survey tool validation allows others to create their own learner personas or help add to the current set of personas created in this study
4. Identification of biomedical data science learner personas informs curriculum design
# Assessing the Efficacy of Domain-Specific Data Science Curriculum in the Biomedical Sciences
How Learner Personas Can Guide Educational Needs in the Short-Term and Long-Term
## Backward Design
1. Identify your learners (learner persona)
2. Plan out your lesson content (concept maps)
3. Define overall goal (summative assessment)
4. Break down the goal (formative assessment)
5. Outline the the course
6. Write a summary of the course
::: footnote
- Wilson G. Teaching Tech Together: How to Make Your Lessons Work and Build a Teaching Community around Them. Taylor & Francis; 2019. http://teachtogether.tech
:::
# Creating the Learning Materials
<!--
## Who Are Our Learners? {.smaller}
- What do we know about their prior knowledge?
:::::: columns
::: {.column width="50%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/concept_maps.png")
```
- Concept maps
- Task Deconstruction
:::
::: {.column width="50%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/dreyfus_model.png")
```
- Dreyfus model of skill acquisition
:::
::::::
::: footnote
- Ambrose SA, Bridges MW, DiPietro M, Lovett MC, Norman MK. How Learning Works: Seven Research-Based Principles for Smart Teaching. John Wiley & Sons; 2010.
- Benner P. Using the Dreyfus Model of Skill Acquisition to Describe and Interpret Skill Acquisition and Clinical Judgment in Nursing Practice and Education. Bulletin of Science, Technology & Society. 2004;24(3):188-199. doi:10.1177/0270467604265061
- Dreyfus SE, Dreyfus HL. A Five-Stage Model of the Mental Activities Involved in Directed Skill Acquisition. California Univ Berkeley Operations Research Center; 1980.
- Koch C, Wilson G. Software carpentry: Instructor Training. Published online June 2016. doi:10.5281/zenodo.57571
- Wilson G. Teaching Tech Together: How to Make Your Lessons Work and Build a Teaching Community around Them. Taylor & Francis; 2019. http://teachtogether.tech
:::
-->
## Managing Prior Knowledge
- Concept maps: graphic of a mental model
- Learner’s prior knowledge can help or hinder learning
```{r}
knitr::include_graphics("./img/040-learning_materials/concept_map_dreyfus.png")
```
::: footnote
- Ambrose SA, Bridges MW, DiPietro M, Lovett MC, Norman MK. How Learning Works: Seven Research-Based Principles for Smart Teaching. John Wiley & Sons; 2010.
- Benner P. Using the Dreyfus Model of Skill Acquisition to Describe and Interpret Skill Acquisition and Clinical Judgment in Nursing Practice and Education. Bulletin of Science, Technology & Society. 2004;24(3):188-199. doi:10.1177/0270467604265061
- Dreyfus SE, Dreyfus HL. A Five-Stage Model of the Mental Activities Involved in Directed Skill Acquisition. California Univ Berkeley Operations Research Center; 1980.
- Koch C, Wilson G. Software carpentry: Instructor Training. Published online June 2016. doi:10.5281/zenodo.57571
- Wilson G. Teaching Tech Together: How to Make Your Lessons Work and Build a Teaching Community around Them. Taylor & Francis; 2019. http://teachtogether.tech
:::
## Summative Assessment
:::::: columns
::: {.column width="50%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/summative-df.png")
```
:::
::: {.column width="50%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/summative-py.png")
```
:::
::::::
## R + Python
:::::: columns
::: {.column width="50%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/summative-r.png")
```
:::
::: {.column width="50%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/summative-py.png")
```
:::
::::::
## Are the Materials Effective?
- Create the materials
- Test retest design
- Pre, post, and long-term survey
- Workshop not classroom setting
- Assessment needs to be more flexible
- Questions need to be broken down for learners
- Ask about confidence not objective assessment
::: footnote
- Jordan K. Data Carpentry Assessment Report: Analysis of Post-Workshop Survey Results. Zenodo; 2016. doi:10.5281/zenodo.165858
- Jordan K. Analysis of The Carpentries Long-Term Impact Survey. Zenodo; 2018. doi:10.5281/zenodo.1402200
- Jordan KL, Marwick B, Duckles J, Zimmerman N, Becker E. Analysis of Software Carpentry’s Post-Workshop Surveys. Zenodo; 2017. doi:10.5281/zenodo.1043533
- Jordan KL, Marwick B, Weaver B, et al. Analysis of the Carpentries’ Long-Term Feedback Survey. Zenodo; 2017. doi:10.5281/zenodo.1039944
- Jordan KL, Michonneau F. Analysis of The Carpentries Long-Term Surveys (April 2020). Zenodo; 2020. doi:10.5281/zenodo.3728205
- Jordan K, Michonneau F, Weaver B. Analysis of Software and Data Carpentry’s Pre- and Post-Workshop Surveys. Zenodo; 2018. doi:10.5281/zenodo.1325464
:::
## Bloom’s Taxonomy
:::::: columns
::: {.column width="50%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/blooms-pyramid.png")
```
:::
::: {.column width="50%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/blooms-willingham.png")
```
:::
::::::
- 2020 Computing Curriculum Guidelines: Knowledge-based -> Competency-based
::: footnote
- Anderson LW, Bloom BS, others. A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. Longman,; 2001.
- Armstrong P. Bloom’s taxonomy. Vanderbilt University Center for Teaching. Published 2010. https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/
- Bloom’s Taxonomy—That Pyramid is a Problem. Teach Like a Champion. Published April 3, 2017. Accessed November 29, 2021. https://teachlikeachampion.com/blog/blooms-taxonomy-pyramid-problem/
- CC2020 Task Force. Computing Curricula 2020: Paradigms for Global Computing Education. ACM; 2020. doi:10.1145/3467967
- Donald Clark Plan B: Bogus pyramids: Learning methods, Maslow and Bloom. Donald Clark Plan B. Published July 13, 2020. Accessed November 17, 2021. https://donaldclarkplanb.blogspot.com/2020/07/bogus-pyramids-learning-methods-maslow.html
:::
## Learning Objectives {.smaller}
:::::: columns
::: {.column width="50%"}
- Name the features of a tidy/clean dataset
- Transform data for analysis
- Identify when spreadsheets are useful
- Assess when a task should not be done in a spreadsheet software
- Break down data processing into smaller individual (and more manageable) steps
- Construct a plot and table for exploratory data analysis
- Calculate, interpret, and communicate an appropriate statistical analysis of the data
:::
::: {.column width="50%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/summative-py.png")
```
:::
::::::
## Create Data Science Learning Materials
:::::: columns
::: {.column width="50%"}
https://ds4biomed.tech/
1. Introduction
1. Spreadsheets
1. R + RStudio
1. Load Data
1. Descriptive Calculations
1. Clean Data (Tidy)
1. Visualization (Intro)
1. Analysis Intro (Logistic)
:::
::: {.column width="50%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/ds4biomed.png")
```
:::
::::::
## ds4biomed: https://ds4biomed.tech/
:::::: columns
::: {.column width="50%"}
Part I
1. Introduction
1. Spreadsheets
1. R + RStudio
1. Load Data
1. Descriptive Calculations
1. Clean Data (Tidy)
1. Visualization (Intro)
1. Analysis Intro (Logistic)
:::
::: {.column width="50%"}
Part II
1. 30-Day Re-admittance
1. Working with multiple datasets
1. APIs
1. Functions
1. Survival Analysis
1. Machine Learning Intro
:::
::::::
# Assessing Workshop Effacy
## Workshop Attendees
:::::: columns
::: {.column width="40%"}
- 8 Workshops
- 200 Attendees across 2 days
- 91 Responses
- 67 Pre-workshop
- 43 Post-workshop
- 11 Long-term
:::
::: {.column width="60%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/workshop-survey-counts.png")
```
:::
::::::
<!--
## Pre-Post Results Overall
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/pre_post-overall.png")
```
-->
## Pre-Post Results Overall
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/pre_post-overall-prop_prop.png")
```
<!--
## Post-Long Summative
:::::: columns
::: {.column width="50%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/post_long-summative.png")
```
:::
::: {.column width="50%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/summative-r.png")
```
:::
::::::
-->
## Pre-Post-Long Results
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/pre_post_long-results.png")
```
## Pre-Post-Long Composite
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/pre_post_long-composite.png")
```
## Learning Material Effectiveness Conclusions
1. Learner Personas and Concept Maps Help Curate Lesson Content
2. Language-Agnostic Lessons Guide Presentation Order
3. Data Science Lessons Differ from Computer Science Lessons
4. Intermediate Materials will be difficult to plan
5. Long-Term Practice is important
6. Work on Relevant Problems Solidify skills
7. Communities of Practice Provide Ongoing Learning and Scalability
# Practical Implications
## How Can I Use This Information?
- Can explore your own (patient) data
- Can work on curating your own data
- Potentially faster research-question cycle
- Continuing education
## Design Your Own Materials
Create your own learner personas:
1. Identify who your learners are
2. Figure out what they need and want to know
3. Plan a guided learning tract
- Use the surveys I’ve made with the data I’ve published
## Teaching Knowledge
- Content Knowledge: What the instructor knows
- Curricular Knowledge: Curriculum materials to teach the content
- Pedagogical Content Knowledge: How to teach the content
## Overall Conclusions {.smaller}
:::::: columns
::: {.column width="40%"}
- Objective way of backward design lesson development
- Domain-specific workshops seem beneficial to meet learning objectives
- Data science have different set of programming skills
- Long-term learning is more important
- Formative + summative assessments in long-term learning
- "10,000 hour rule", "deliberate practice", "forgetting curve"
:::
::: {.column width="60%"}
```{r, out.width="100%"}
knitr::include_graphics("./img/040-learning_materials/pre_post_long-lo_only-composite.png")
```
:::
::::::
::: footnote
- Malcolm Gladwell: 10,000 Hour Rule
- László and Klara Polgár: deliberate practice
- Hermann Ebbinghaus: forgetting curve
:::
## Communities (of Practice)
- The Carpentires
- r/medicine (slack), r/pharma
- Tidy Tuesday*
- R-Ladies: https://rladies.org/
- Py-Ladies: https://pyladies.com/
- R4DS Community (slack): r4ds.io/join
- Nursing & Data Science Collaboratory (slack)
- OHDSI (MS Teams)
- Observational Health Data Sciences and Informatics
- Real Python: https://realpython.com/
::: footnote
- Shrestha N, Barik T, Parnin C. Remote, but Connected: How #TidyTuesday Provides an Online Community of Practice for Data Scientists. Proc ACM Hum-Comput Interact. 2021;5(CSCW1):52:1-52:31. doi:10.1145/3449126
:::
## Teaching Tech Together: The Rules {.smaller}
:::: {.columns}
::: {.column width="50%"}
1. **Be kind: all else is details.**
2. Remember that you are not your learners…
3. …that most people would rather fail than change…
4. …and that ninety percent of magic consists of knowing one extra thing.
5. Never teach alone.
:::
::: {.column width="50%"}
6. Never hesitate to sacrifice truth for clarity.
7. Make every mistake a lesson.
8. Remember that no lesson survives first contact with learners…
9. …that every lesson is too short for the teacher and too long for the learner…
10. …and that nobody will be more excited about the lesson than you are.
:::
::::
::: footnote
- Wilson G. Teaching Tech Together: How to Make Your Lessons Work and Build a Teaching Community around Them. Taylor & Francis; 2019. http://teachtogether.tech
:::
<!-- inicio font awesome -->
```{=html}
<script src="https://kit.fontawesome.com/1f72d6921a.js" crossorigin="anonymous"></script>
```
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css"> <!-- final font awesome -->