-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlegal_binary_search_tree_LCCI.py
68 lines (59 loc) · 2.42 KB
/
legal_binary_search_tree_LCCI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Definition for a binary tree node.
from collections import deque
from typing import Tuple
class TreeNode:
def __init__(self, x):
self.val = x
self.left = None
self.right = None
# 傻方法,存储范围
class Solution:
# 二叉搜索树是一种节点值之间具有一定数量级次序的二叉树,对于树中每个节点:
# 若其左子树存在,则其左子树中每个节点的值都不大于该节点值;
# 若其右子树存在,则其右子树中每个节点的值都不小于该节点值。
def isValidBST(self, root: TreeNode) -> bool:
if not root:
return True
_, _, flag = self.recursive(root)
return flag
def recursive(self, node: TreeNode) -> Tuple:
# max_val: 当前树的最大值
# min_val: 当前树的最小值
# flag: 标记状态
if not node.left and not node.right:
return node.val, node.val, True
elif not node.right:
max_val, min_val, f = self.recursive(node.left)
flag = f and max_val < node.val
print("node:{}, max:{}, min:{}, flag:{}".format(node.val, node.val, min_val, flag))
return node.val, min_val, flag
elif not node.left:
max_val, min_val, f = self.recursive(node.right)
flag = f and min_val > node.val
print("node:{}, max:{}, min:{}, flag:{}".format(node.val, max_val, node.val, flag))
return max_val, node.val, flag
else:
max_val_1, min_val_1, f1 = self.recursive(node.left)
max_val_2, min_val_2, f2 = self.recursive(node.right)
flag = f1 and f2 and max_val_1 < node.val < min_val_2
print("node:{}, max:{}, min:{}, flag:{}".format(node.val, min_val_1, max_val_2, flag))
return max_val_2, min_val_1, flag
# 好点的:中序遍历二叉树
class Solution2:
def __init__(self):
self.pre = -float('inf')
def isValidBST(self, root: TreeNode) -> bool:
if not root:
return True
return self.inorder_traversal(root)
def inorder_traversal(self, node: TreeNode) -> bool:
f1, f2 = True, True
if node.left:
f1 = self.inorder_traversal(node.left)
if node.val <= self.pre:
return False
else:
self.pre = node.val
if node.right:
f2 = self.inorder_traversal(node.right)
return f1 and f2