-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathloss.py
38 lines (29 loc) · 1.27 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from torch import nn
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class CTCLoss(nn.Module):
def __init__(self, params, reduction='mean'):
super().__init__()
blank_idx = params.blank_idx
self.loss_func = torch.nn.CTCLoss(blank=blank_idx, reduction=reduction, zero_infinity=True)
def forward(self, pred, args):
batch_size = pred.size(0)
label, label_length = args['targets'], args['targets_lengths']
pred = pred.log_softmax(2)
pred = pred.permute(1, 0, 2)
preds_lengths = torch.tensor([pred.size(0)] * batch_size, dtype=torch.long)
loss = self.loss_func(pred, label.to(device), preds_lengths.to(device), label_length.to(device))
return loss
class AttnLoss(nn.Module):
def __init__(self, params):
super(AttnLoss, self).__init__()
self.loss_func = nn.CrossEntropyLoss()
def forward(self, pred, args):
label, label_length = args['targets'], args['targets_lengths']
label = label[:, 1:]
loss = self.loss_func(pred.view(-1, pred.size(-1)), label.contiguous().view(-1))
return loss