-
Notifications
You must be signed in to change notification settings - Fork 15
/
imdb_main.py
131 lines (116 loc) · 5.2 KB
/
imdb_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# lint as: python3
"""Main file to run AwA experiments."""
import os
import ipca_v2
import imdb_helper_v2
import keras
import keras.backend as K
import numpy as np
from absl import app
import matplotlib.pyplot as plt
import parse_imdb
stop_word_list = ["i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "your", "yours",
"yourself", "yourselves", "he", "him", "his", "himself", "she", "her", "hers", "herself",
"it", "its", "itself", "they", "them", "their", "theirs", "themselves", "what", "which", "who",
"whom", "this", "that", "these", "those", "am", "is", "are", "was", "were", "be", "been", "being",
"have", "has", "had", "having", "do", "does", "did", "doing", "a", "an", "the", "and", "but", "if",
"or", "because", "as", "until", "while", "of", "at", "by", "for", "with", "about", "against", "between",
"into", "through", "during", "before", "after", "above", "below", "to", "from", "up", "down", "in", "out",
"on", "off", "over", "under", "again", "further", "then", "once", "here", "there", "when", "where", "why",
"how", "all", "any", "both", "each", "few", "more", "most", "other", "some", "such", "no", "nor",
"only", "own", "same", "so", "than", "very", "s", "t", "can", "will", "just", "don", "should", "now",
"one", "it's", "br", "<PAD>", "<START>", "<UNK>", "would", "could", "also", "may", "many", "go", "another",
"want", "two", "actually", "every", "thing", "know", "made", "get", "something", "back", "though"]
def main(_):
n_concept = 4
batch_size = 128
pretrain = True
# Loads data.
x_train, x_val, y_train, y_val = imdb_helper_v2.load_data()
print(x_train[0])
# Loads model
model, feature_model, predict_model = imdb_helper_v2.load_model_stm(
x_train, y_train, x_val, y_val, pretrain=pretrain)
pretrain = False
# get feature
if not pretrain:
f_train = feature_model.predict(x_train)
f_val = feature_model.predict(x_val)
np.save('imdb_data/f_train_imdb.npy', f_train)
np.save('imdb_data/f_val_imdb.npy', f_val)
#np.save('all_feature_best.npy', all_feature)
else:
f_train = np.load('imdb_data/f_train_imdb.npy')
f_val = np.load('imdb_data/f_val_imdb.npy')
N = f_train.shape[0]
f_train = f_train.reshape(-1,196,250)
f_val = f_val.reshape(-1,196,250)
print(f_train.shape)
trained = True
thres_array = [0.3]
if not trained:
for count,thres in enumerate(thres_array):
if count:
load = 'imdb_data/latest_topic_nlp.h5'
else:
load = False
#load = 'latest_topic_nlp.h5'
topic_model_pr, optimizer_reset, optimizer, \
topic_vector, n_concept, f_input = ipca_v2.topic_model_nlp(predict_model,
f_train,
y_train,
f_val,
y_val,
n_concept,
verbose=False,
epochs=10,
metric1=['binary_accuracy'],
loss1=keras.losses.binary_crossentropy,
thres=thres,
load=load)
topic_model_pr.fit(
f_train,
y_train,
batch_size=batch_size,
epochs=10,
validation_data=(f_val, y_val),
verbose=True)
#K.get_session().run(optimizer_reset)
topic_model_pr.save_weights('imdb_data/latest_topic_nlp.h5')
topic_vec = topic_model_pr.layers[1].get_weights()[0]
recov_vec = topic_model_pr.layers[-4].get_weights()[0]
np.save('imdb_data/topic_vec_nlp.npy',topic_vec)
np.save('imdb_data/recov_vec_nlp.npy',recov_vec)
else:
topic_vec = np.load('imdb_data/topic_vec_nlp.npy')
recov_vec = np.load('imdb_data/recov_vec_nlp.npy')
f_train_n = f_train/(np.linalg.norm(f_train,axis=2,keepdims=True)+1e-9)
topic_vec_n = topic_vec/(np.linalg.norm(topic_vec,axis=0,keepdims=True)+1e-9)
topic_prob = np.matmul(f_train_n,topic_vec_n)
print(topic_prob.shape)
print('top prob')
print(np.mean(np.max(topic_prob,axis=(0,1))))
n_size = 196
concept_nn_array = np.zeros((n_concept,500,9))
for i in range(n_concept):
print('concept:{}'.format(i))
image_list = []
ind = np.argsort(topic_prob[:,:,i].flatten())[::-1][:500]
#ind = np.argpartition(topic_prob[:,:,i].flatten(), -10)[-10:]
sim_list = topic_prob[:,:,i].flatten()[ind]
print(sim_list)
print(ind)
dict_count = {}
for jc,j in enumerate(ind):
j_int = int(np.floor(j/(n_size)))
a = int(j-j_int*(n_size))
temp_sentence = imdb_helper_v2.show_sentence(x_train, j_int, a, dict_count)
concept_nn_array[i,jc,:] = x_train[j_int][a*2:a*2+9]
#f1 = imagedir+filename[j_int]
for key in dict_count:
if dict_count[key]>=8 and key not in stop_word_list:
print(key)
print(dict_count[key])
np.save('concept_nn_nlp.npy', concept_nn_array)
if __name__ == '__main__':
app.run(main)