-
Notifications
You must be signed in to change notification settings - Fork 1
/
preprocess.py
239 lines (197 loc) · 9.36 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Importing Libraries
import time
import nltk
import pandas as pnda
nltk.download('punkt')
nltk.download('stopwords')
from nltk.tokenize import WhitespaceTokenizer as tknizer
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer as stemmer
import pickle as pckl
COUNT = 6810 # numbe of documents in the database.csv file
class ProcessData:
def __init__(self):
"""
This Class is used to process the Dataset, followed by Normalization and Tokenization.
The goal is to create an indexing list and store it in a pckl file.
"""
self.tokenizer_w = tknizer()
self.stop = stopwords.words('english')
self.ps = stemmer()
def read(self):
'''
Reads the dataset which is in csv format and stores it as a dataframe in df.
Returns the dataframe df.
'''
df = pnda.read_csv('database.csv')
filehandler = open("book_description.obj" , "wb")
pckl.dump(df , filehandler)
filehandler.close()
return df
def LowerCase(self, df):
'''
Converts the text to lower case and replaces NA with ''.
Takes parameters as the dataframe and returns the processed dataframe 'df'
'''
print("Time required for Preprocessing and Tokenizing")
self.start_time = time.time()
# Remove NA values
df = df.fillna('')
# 'data' variable stores column names used to form the corpus
data = ['isbn13', 'isbn10','title','subtitle','authors','categories','thumbnail','description','published_year','average_rating','num_pages','ratings_count']
# Convert all text to Lower Case
for item in data:
df[item] = df[item].astype(str).str.lower()
df = df.fillna('')
return df
def preprocess(self, text):
'''
Removes punctuations and escape sequences.
Takes the text to be modified as a parameter and returns the modified text.
'''
text = text.replace("\n"," ").replace("\r"," ")
text = text.replace("'s"," ")
punctuationList = '!"#$%&\()*+,-./:;<=>?@[\\]^_{|}~'
x = str.maketrans(dict.fromkeys(punctuationList," "))
text = text.translate(x)
return text
def tokenizeHelper(self, text):
'''
Calls the nltk tknizer to tokenize.
Takes parameter as the text and returns the tokenized text.
'''
text = self.preprocess(text)
return self.tokenizer_w.tokenize(text)
def Tokenizer(self, df):
'''
Adds Columns to the dataframe containing the tokens.
Takes parameter as the dataframe and returns the dataframe with columns containing the tokens.
'''
df['TokensDescription'] = df['description'].apply(self.tokenizeHelper)
df['TokensSubtitle'] = df['subtitle'].apply(self.tokenizeHelper)
df['TokensTitle'] = df['title'].apply(self.tokenizeHelper)
df['TokensAuthor'] = df['authors'].apply(self.tokenizeHelper)
df['TokensCategory'] = df['categories'].apply(self.tokenizeHelper)
df['Tokenspublished_year'] = df['published_year'].apply(self.tokenizeHelper)
df['Tokensaverage_rating'] = df['average_rating'].apply(self.tokenizeHelper)
df['Tokensnum_pages'] = df['num_pages'].apply(self.tokenizeHelper)
df['Tokensratings_count'] = df['ratings_count'].apply(self.tokenizeHelper)
# Tokens column stores the tokens for the corresponding document
df['Tokens'] = df['TokensDescription'] + df['TokensSubtitle'] + df['TokensTitle'] + df['TokensAuthor'] + df['TokensCategory'] + df['Tokenspublished_year'] + df['Tokensaverage_rating'] + df['Tokensnum_pages'] + df['Tokensratings_count']
df['Length'] = df.Tokens.apply(len)
df['TitleLength'] = df.TokensTitle.apply(len)
print("--- %s seconds ---" % (time.time() - self.start_time))
return df
def RemoveStopWords(self, df):
'''
This Function removes the stopwords from the Tokens Column in the DataFrame.
Takes the dataframe as a parameter. The changed dataframe is returned.
'''
print("Time required to Remove Stop Words")
self.start_time = time.time()
df['Tokens'] = df['Tokens'].apply(lambda x: [item for item in x if item not in self.stop])
print("--- %s seconds ---" % (time.time() - self.start_time))
return df
def Stemmer(self, df, x):
'''
This Function uses Porter's Stemmer for Stemming.
Takes the dataframe and the column name as parameters.
Stemming is done on the column name x.
Function returns the dataframe 'df'.
'''
print("Time required for Stemming")
self.start_time = time.time()
df['stemmed'] = df[x].apply(lambda x: [self.ps.stem(word) for word in x])
print("--- %s seconds ---" % (time.time() - self.start_time))
return df
def BagOfWords(self, uniqueWords, tokens):
'''
Creates a Dictionary with Keys as words and Values as the word-frequency in the document.
Function parameter : the dataframe column 'Unique_Words' (which stores the unique words per document).
: the dataframe column 'Tokens' (which stores the tokens per document).
Function returns a dictionary called numOfWords.
'''
unique = tuple(uniqueWords)
numOfWords = dict.fromkeys(unique, 0)
for word in tokens:
numOfWords[word] += 1
return numOfWords
def TermFrequency(self, df_tokenized):
'''
Calculates the term frequency of each word document-wise.
Function takes the dataframe as parameters and returns a dataframe with extra columns.
'Unique _Words' column stores unique words per document by using set.
'Frequency' column stores the frequency of each word per document(i.e term frequency).
'''
print("Time required to create the Term Frequency")
self.start_time = time.time()
df_tokenized['Unique_Words'] = df_tokenized['stemmed'].apply(set)
df_tokenized['Frequency'] = df_tokenized.apply(lambda x: self.BagOfWords(x.Unique_Words, x.stemmed), axis = 1)
print("--- %s seconds ---" % (time.time() - self.start_time))
return df_tokenized
def Vocabulary(self, df_tokenized):
'''
Creates Vocabulary for all the documents. i.e Stores all the unique tokens.
Takes dataframe as a parameter and returns the unique words in the entire dataset(stored as Inverted_Index).
Uses a set to calculate unique words for the entire dataset.
'''
print("Time required to create the Inverted Index")
self.start_time = time.time()
Inverted_Index = pnda.DataFrame()
tokens = set(df_tokenized['Unique_Words'][0])
for i in range (0, COUNT-1):
tokens = set.union(tokens,set(df_tokenized['Unique_Words'][i + 1]))
Inverted_Index = pnda.DataFrame(tokens)
Inverted_Index.columns = ['Words']
return Inverted_Index
def InvertedIndex(self, Inverted_Index, df_tokenized):
'''
Adds The posting list to the Inverted Index DataFrame.
Takes the indexing list and the dataframe as parameters and returns the indexing list.
'''
inverted_index_dict = {}
for i in range (0, COUNT):
for item in df_tokenized['Unique_Words'][i]:
if item in inverted_index_dict.keys():
inverted_index_dict[item] += 1
else:
inverted_index_dict[item] = 1
Inverted_Index = pnda.Series(inverted_index_dict).to_frame()
Inverted_Index.columns =['PostingList']
print("--- %s seconds ---" % (time.time() - self.start_time))
return Inverted_Index
def Write(self, file, df):
'''
Stores the dataframes as pckl files.
Takes filename and dataframe as parameter.
'''
filehandler = open(file,"wb")
pckl.dump(df,filehandler)
filehandler.close()
def main(self):
df = self.read()
df = self.LowerCase(df)
df = self.Tokenizer(df)
df = self.RemoveStopWords(df)
df = self.Stemmer(df, 'Tokens')
df = self.TermFrequency(df)
# Stores only the required columns from the processed dataframe.
df1 = df[['Length' , 'Frequency']]
# Storing inverted processed data as pckl
self.Write("processed_data.obj", df1)
df_Title = df[['TokensTitle', 'TitleLength']]
df_Title = self.Stemmer(df_Title, 'TokensTitle')
df_Title = self.TermFrequency(df_Title)
# Storing inverted processed data as pickel
self.Write("processed_data_title.obj", df_Title)
Inverted_Index = self.Vocabulary(df)
Inverted_Index = self.InvertedIndex(Inverted_Index, df)
# Storing inverted index as pckl
self.Write("inverted_index.obj", Inverted_Index)
Inverted_Index_Title = self.Vocabulary(df_Title)
Inverted_Index_Title = self.InvertedIndex(Inverted_Index_Title, df_Title)
# Storing inverted index of Title as pckl
self.Write("inverted_index_title.obj", Inverted_Index_Title)
# print(Inverted_Index_Title)
Data = ProcessData()
Data.main()