forked from munibanust/febrl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simplehmm.py
874 lines (710 loc) · 28.8 KB
/
simplehmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
# =============================================================================
# AUSTRALIAN NATIONAL UNIVERSITY OPEN SOURCE LICENSE (ANUOS LICENSE)
# VERSION 1.3
#
# The contents of this file are subject to the ANUOS License Version 1.3
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at:
#
# https://sourceforge.net/projects/febrl/
#
# Software distributed under the License is distributed on an "AS IS"
# basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
# the License for the specific language governing rights and limitations
# under the License.
#
# The Original Software is: "simplehmm.py"
#
# The Initial Developer of the Original Software is:
# Dr Peter Christen (Research School of Computer Science, The Australian
# National University)
#
# Copyright (C) 2002 - 2011 the Australian National University and
# others. All Rights Reserved.
#
# Contributors:
#
# Alternatively, the contents of this file may be used under the terms
# of the GNU General Public License Version 2 or later (the "GPL"), in
# which case the provisions of the GPL are applicable instead of those
# above. The GPL is available at the following URL: http://www.gnu.org/
# If you wish to allow use of your version of this file only under the
# terms of the GPL, and not to allow others to use your version of this
# file under the terms of the ANUOS License, indicate your decision by
# deleting the provisions above and replace them with the notice and
# other provisions required by the GPL. If you do not delete the
# provisions above, a recipient may use your version of this file under
# the terms of any one of the ANUOS License or the GPL.
# =============================================================================
#
# Freely extensible biomedical record linkage (Febrl) - Version 0.4.2
#
# See: http://datamining.anu.edu.au/linkage.html
#
# =============================================================================
"""Module simplehmm.py - Routines for simple Hidden Markov Model (HMM)
functionality.
DESCRIPTION:
This module implements a class 'hmm' for simple Hidden Markov Models
(HMM).
PUBLIC FUNCTIONS:
initialisation (__init__) Initialise a new Hidden Markov Model
set_trans_prob Set transition probability
set_obser_prob Set observation probability
set_init_prob Set initial state probability
check_prob Check probabilities in HMM for validity
train Train the HMM with annotated training data
viterbi Apply the Viterbi algorithm to get probability
of an observation sequence
save_hmm Save the HMM into a text file
load_hmm Load a HMM from a text file
print_hmm Print a HMM
See doc strings of individual functions for detailed documentation.
TODO:
- 6/12/2002: Add start and end states
"""
# =============================================================================
# Import necessary modules (Python standard modules first, then Febrl modules)
import logging
import os
import time
# =============================================================================
class hmm:
"""Routines for simple HMM functionality.
"""
def __init__(self, description, state_list, obser_list, inita_prob=None,
trans_prob=None, obser_prob=None):
"""Initialise a new Hidden Markov Model.
USAGE:
myhmm = hmm(description, states, observ)
ARGUMENTS:
description A description for the HMM
state_list List of states of the HMM
obser_list List of observations
inita_prob Initial state probabilities (default: None)
trans_prob Transition probabilities (default: None)
obser_prob Observation probabilities (default: None)
DESCRIPTION:
This routine initialises a new HMM data structure using the given state
and observation list.
Optional arguments are initial state probabilities, transition
probabilities and observation probabilities. If they are not given
(default) they are set to zero.
"""
if (not isinstance(description, str)):
logging.exception('Argument "description" is not a string')
raise Exception
if (not isinstance(state_list, list)):
logging.exception('Argument "state_list" is not a list')
raise Exception
if (not isinstance(obser_list, list)):
logging.exception('Argument "obser_list" is not a list')
raise Exception
self.description = description
self.N = len(state_list)
self.M = len(obser_list)
self.S = state_list
self.O = obser_list
tmp = range(self.N) # Temporary array for states
for i in range(self.N):
tmp[i] = 0.0
# Matrix for transition probabilities - - - - - - - - - - - - - - - - - - -
#
self.A = []
for i in range(self.N): # One line per state
self.A.append(tmp[:])
if (trans_prob != None): # Transition probabilities given as input
if (not isinstance(trans_prob, list)):
logging.exception('Argument "trans_prob" is not a list')
raise Exception
for i in range(self.N):
for j in range(self.N):
if (not isinstance(trans_prob[i][j],float)) or \
(trans_prob[i][j] < 0.0) or (trans_prob[i][j] > 1.0):
logging.exception('Argument "trans_prob" at index [%i,%i]' % \
(i,j) + ' is not a valid number between 0.0 ' + \
'and 1.0')
raise Exception
self.A[i][j] = trans_prob[i][j]
# Vector for initial state probabilities - - - - - - - - - - - - - - - - -
#
self.pi = tmp[:]
if (inita_prob != None): # Initial state probabilities given as input
if (not isinstance(inita_prob, list)):
logging.exception('Argument "inita_prob" is not a list')
raise Exception
for i in range(self.N):
if (not isinstance(inita_prob[i],float)) or \
(inita_prob[i] < 0.0) or (inita_prob[i] > 1.0):
logging.exception('Argument "inita_prob" at index [%i] is not ' % \
(i) + 'a valid number between 0.0 and 1.0')
raise Exception
self.pi[i] = inita_prob[i]
tmp = range(self.M) # Temporary array for observations
for i in range(self.M):
tmp[i] = 0.0
# Matrix for observation probabilities - - - - - - - - - - - - - - - - - -
#
self.B = []
for i in range(self.N): # One line per state
self.B.append(tmp[:])
if (obser_prob != None): # Observation probabilities given as input
if (not isinstance(obser_prob, list)):
logging.exception('Argument "obser_prob" is not a list')
raise Exception
for i in range(self.N):
for j in range(self.M):
if (not isinstance(obser_prob[i][j],float)) or \
(obser_prob[i][j] < 0.0) or (obser_prob[i][j] > 1.0):
logging.exception('Argument "obser_prob" at index [%i,%i]' % \
(i,j) + ' is not a valid number between 0.0 ' + \
'and 1.0')
raise Exception
self.B[i][j] = obser_prob[i][j]
# Make dictionaries with indices of state and observation names - - - - - -
#
self.S_ind = {}
for i in range(self.N):
self.S_ind[self.S[i]] = i
self.O_ind = {}
for i in range(self.M):
self.O_ind[self.O[i]] = i
# A log message - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#
logging.info('Initialised HMM:')
logging.info(' Description: %s' % (self.description))
logging.info(' States: %s' % (str(state_list)))
logging.info(' Observations: %s' % (str(obser_list)))
# ---------------------------------------------------------------------------
def set_trans_prob(self, from_state, to_state, trans_prob):
"""Set transition probability from 'from_state' to 'to_state'
USAGE:
myhmm.set_trans_prob(from_state, to_state, trans_prob)
ARGUMENTS:
from_state From state (must be in list of states of the HMM)
to_state To state (must be in list of states of the HMM)
trans_prob Corresponding transition probability to be set
DESCRIPTION:
Sets the transition probability from 'from_state' to 'to_state'
to the given value.
"""
if (from_state not in self.S):
logging.exception('Illegal "from" state: %s' % (str(from_state)))
raise Exception
if (to_state not in self.S):
logging.exception('Illegal "to" state: %s' % (str(to_state)))
raise Exception
if (not isinstance(trans_prob,float)) or (trans_prob < 0.0) or \
(trans_prob > 1.0):
logging.exception('Argument "trans_prob" is not a valid number ' + \
'between 0.0 and 1.0')
raise Exception
self.A[self.S_ind[from_state]][self.S_ind[to_state]] = trans_prob
# ---------------------------------------------------------------------------
def set_obser_prob(self, state, obser, obser_prob):
"""Set observation probability for 'obser' in 'state'.
USAGE:
myhmm.set_obser_prob(state, obser, obser_prob)
ARGUMENTS:
state The state (must be in list of states of the HMM)
to_state The observation (must be in list of observations of the HMM)
obser_prob Corresponding observation probability to be set (observation
must be in the list of observations of the HMM)
DESCRIPTION:
For state 'state' sets the probability for observation 'obser' to the
given value.
"""
if (state not in self.S):
logging.exception('Illegal state: %s ' (str(state)))
raise Exception
if (obser not in self.O):
logging.exception('Illegal observation: %s' % (str(obser)))
raise Exception
if (not isinstance(obser_prob,float)) or (obser_prob < 0.0) or \
(obser_prob > 1.0):
logging.exception('Argument "obser_prob" is not a valid number ' + \
'between 0.0 and 1.0')
raise Exception
self.B[self.S_ind[state]][self.O_ind[obser]] = obser_prob
# ---------------------------------------------------------------------------
def set_init_prob(self, state, init_prob):
"""Set initial state probability for 'state'.
USAGE:
myhmm.set_init_prob(state, init_prob)
ARGUMENTS:
state The state (must be in list of states of the HMM)
init_prob Corresponding initial probability to be set
DESCRIPTION:
For state 'state' sets the initial state probability to the given value.
"""
if (state not in self.S):
logging.exception('Illegal state: %s' % (str(state)))
raise Exception
if (not isinstance(init_prob,float)) or (init_prob < 0.0) or \
(init_prob > 1.0):
logging.exception('Argument "init_prob" is not a valid number ' + \
'between 0.0 and 1.0')
raise Exception
self.pi[self.S_ind[state]] = init_prob
# ---------------------------------------------------------------------------
def check_prob(self):
"""Check probabilities in HMM for validity.
USAGE:
myhmm.check_prob()
ARGUMENTS:
None
DESCRIPTION:
Checks all probabilities in the HMM for validity, i.e. if they sum to
1.0 in each state (observation and outgoing state probabilities).
If an error occurs, a negative number is returned, 0 otherwise
"""
delta = 0.0000000000001 # Account for floating-point rounding errors
ret = 0
sum = 0.0
for i in range(self.N):
sum = sum+self.pi[i]
if (abs(sum - 1.0) > delta):
logging.warn('HMM initial state probabilities sum is not 1: %f' % (sum))
ret -= 1
for i in range(self.N):
sum = 0.0
for j in range(self.N):
sum = sum+self.A[i][j]
if (abs(sum - 1.0) > delta):
logging.warn('HMM state "%s" has transition ' % (self.S[i]) + \
'probabilities sum not 1.0: %f' % (sum))
ret -= 1
for i in range(self.N):
sum = 0.0
for j in range(self.M):
sum = sum+self.B[i][j]
if (abs(sum - 1.0) > delta):
logging.warn('HMM state "%s" has observation ' % (self.S[i]) + \
'probabilities sum not 1.0: '+str(sum))
ret -= 1
return ret
# ---------------------------------------------------------------------------
def train(self, train_data, smoothing=None):
"""Train the HMM with annotated training data (supervised learning).
USAGE:
myhmm.train(train_data)
ARGUMENTS:
train_data A set of training data in list form
smoothing If smoothing of the observation probabilities is desired (for
unknown symbols) then ths argument should be set to either
'laplace' (for Laplace smoothing) or 'absdiscount' (for the
absolute discounting method).
The default is 'None' and no smoothing will be done.
DESCRIPTION:
Using the training data, the HMM probabilities are set.
'train_data' is a Python list with one element per training record.
Each training record is a list (sequence) with pairs (tuple or list)
of (state,observation) pairs. These training records can have varying
length.
For more information on the smoothing methods, see e.g.
V.Borkar et.al., Automatic Segmentation of Text into
Structured Records
Section 2.2
"""
if (smoothing not in [None, 'laplace', 'absdiscount']):
logging.exception('Illegal value for "smoothing" argument: %s' % \
(smoothing)+ ', possible are: None, "laplace" or ' + \
'"absdiscount"')
raise Exception
# Reset initial state, transition and observation probabilities - - - - - -
#
for i in range(self.N):
self.pi[i] = 0.0
for j in range(self.N):
self.A[i][j] = 0.0
for j in range(self.M):
self.B[i][j] = 0.0
# Sum up probabilities from training data - - - - - - - - - - - - - - - - -
#
for train_rec in train_data:
(init_state, init_obser) = train_rec[0] # Get first tuple
i = self.S_ind[init_state]
self.pi[i] = self.pi[i] + 1.0
prev_i = -1 # No previous index yet
for pair in train_rec: # For each pair in this training record
(state,obser) = pair
i = self.S_ind[state]
j = self.O_ind[obser]
self.B[i][j] = self.B[i][j] + 1.0
if (prev_i > -1): # If previous index defined:
self.A[prev_i][i] = self.A[prev_i][i] + 1.0
prev_i = i
# Scale counts into probabilities - - - - - - - - - - - - - - - - - - - - -
#
# Scale initial probabilities
#
sum = 0.0
for i in range(self.N):
sum = sum+self.pi[i]
if (sum != 0.0):
for i in range(self.N):
self.pi[i] = self.pi[i] / sum
# Scale transition probabilities
#
for i in range(self.N): # For each state
sum = 0.0
for j in range(self.N):
sum = sum+self.A[i][j]
if (sum != 0.0):
for j in range(self.N):
self.A[i][j] = self.A[i][j] / sum
# Scale observation probabilities
#
if (smoothing == None): # No smoothing to be done
for i in range(self.N): # For each state
sum = 0.0
for j in range(self.M):
sum = sum+self.B[i][j]
if (sum != 0.0):
for j in range(self.M):
self.B[i][j] = self.B[i][j] / sum
elif (smoothing == 'laplace'): # Do Laplace smoothing
for i in range(self.N): # For each state
sum = float(self.M)
for j in range(self.M):
sum = sum+self.B[i][j]
for j in range(self.M):
self.B[i][j] = (self.B[i][j]+1.0) / sum
elif (smoothing == 'absdiscount'): # Do absolute discounting smoothing
for i in range(self.N): # For each state
sum = 0.0
mi = 0 # Number of distinct symbols seen in state i
for j in range(self.M):
if (self.B[i][j] != 0): # Symbol has been counted during training
sum = sum+self.B[i][j]
mi += 1
x = 1.0 / float(sum+self.M)
if (sum != 0.0):
for j in range(self.M):
if (self.B[i][j] != 0.0): # A known observation symbol
self.B[i][j] = (self.B[i][j] / sum) - x
else: # An unknown observation symbol
self.B[i][j] = float(mi * x) / float(self.M-mi)
self.check_prob() # Check if probabilities are OK
# A log message - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#
logging.info('Trained HMM with %i training records' % (len(train_data)))
logging.info(' Smooting technique used: %s' % (str(smoothing)))
# ---------------------------------------------------------------------------
def viterbi(self, obser_seq):
"""Apply the Viterbi algorithm.
USAGE:
[sequence, seq_prob] = myhmm.viterbi(obser_seq)
ARGUMENTS:
obser_seq An observation sequence (all observations must be in the list
of observations of the HMM)
DESCRIPTION:
This routine uses the Viterbi algorithm to find the most likely state
sequence for the given observation sequence. Returns the sequence in a
list and it's probability.
"""
tmp = range(self.N) # Temporary array with zeros
for i in range(self.N):
tmp[i] = 0
obs_len = len(obser_seq)
obs_ind = []
for obs in obser_seq:
obs_ind.append(self.O_ind[obs])
delta = [tmp[:]] # Compute initial state probabilities
for i in range(self.N):
delta[0][i] = self.pi[i] * self.B[i][obs_ind[0]]
phi = [tmp[:]]
for obs in obs_ind[1:]: # For all observations except the inital one
delta_t = tmp[:]
phi_t = tmp[:]
for j in range(self.N): # Following formula 33 in Rabiner'89
tdelta = tmp[:]
tphimax = -1.0
for i in range(self.N):
tphi_tmp = delta[-1][i] * self.A[i][j]
if (tphi_tmp > tphimax):
tphimax = tphi_tmp
phi_t[j] = i
tdelta[i] = tphi_tmp * self.B[j][obs]
delta_t[j] = max(tdelta)
delta.append(delta_t)
phi.append(phi_t)
# Backtrack the path through the states (Formula 34 in Rabiner'89)
#
tmax = -1.0
for i in range(self.N):
if (delta[-1][i] > tmax):
tmax = delta[-1][i]
state_seq = [i] # Last state with maximum probability
phi.reverse() # Because we start from the end of the sequence
for tphi in phi[:-1]:
state_seq.append(tphi[state_seq[-1]])
sequence = []
for state in state_seq:
sequence.append(self.S[state])
sequence.reverse() # Reverse into correct time direction
state_seq.reverse()
# Finally compute probability of this state and observation sequence
#
prev_ind = state_seq[0]
seq_prob = self.pi[prev_ind]
seq_prob *= self.B[prev_ind][self.O_ind[obser_seq[0]]]
for i in range(1,len(state_seq)):
ind = state_seq[i]
obs = self.O_ind[obser_seq[i]]
seq_prob *= self.A[prev_ind][ind]
seq_prob *= self.B[ind][obs]
prev_ind = ind
# A log message - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#
logging.debug(' Viterbi analysis')
logging.debug(' Input observation sequence: %s' % (str(obser_seq)))
logging.debug(' Output state sequence: %s' % (str(sequence)))
logging.debug(' Output probability: %f' % (seq_prob))
return [sequence, seq_prob]
# ---------------------------------------------------------------------------
def save_hmm(self, file_name):
"""Save the HMM into a text file.
USAGE:
myhmm.save_hmm(file_name)
ARGUMENTS:
file_name The name of the text file into which the HMM is written
DESCRIPTION:
Writes comments into the text file in Python style, i.e. lines
beginning with a hash character '#'.
If the file name does not end with "hmm" and does not contain a "."
then ".hmm" will be appended to the file name.
"""
if ((not file_name.endswith('hmm')) and ('.' not in file_name)):
file_name = file_name+'.hmm'
# Open file for writing - - - - - - - - - - - - - - - - - - - - - - - - - -
#
try:
f = open(file_name, 'w')
except:
logging.exception('Cannot write to file: %s' % (file_name))
raise IOError
# Write header - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#
f.write("# Hidden Markov Model written by 'simplehmm.py'"+ \
os.linesep)
f.write("#"+os.linesep)
f.write("# Created "+time.ctime(time.time())+os.linesep)
f.write("#"+os.linesep)
f.write("# File name: "+file_name+os.linesep)
f.write('#'+'-'*70+os.linesep)
f.write(os.linesep)
# Write HMM description - - - - - - - - - - - - - - - - - - - - - - - - - -
#
f.write("# HMM description"+os.linesep)
f.write("#"+os.linesep)
f.write(self.description+os.linesep)
f.write(os.linesep)
# Write HMM states - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#
f.write("# HMM states"+os.linesep)
f.write("#"+os.linesep)
state_str = ', '.join(self.S)
f.write(state_str+os.linesep)
f.write(os.linesep)
# Write HMM observations - - - - - - - - - - - - - - - - - - - - - - - - -
#
f.write("# HMM observations"+os.linesep)
f.write("#"+os.linesep)
obser_str = ', '.join(self.O)
f.write(obser_str+os.linesep)
f.write(os.linesep)
# Write HMM initial probabilities - - - - - - - - - - - - - - - - - - - - -
#
f.write("# HMM initial probabilities"+os.linesep)
f.write("#"+os.linesep)
inital_prob_str = ''
for i in range(self.N):
inital_prob_str += '%f' %(self.pi[i])+', '
f.write(inital_prob_str[:-2]+os.linesep) # Strip of trailing ', '
f.write(os.linesep)
# Write HMM transition probabilities - - - - - - - - - - - - - - - - - - -
#
f.write("# HMM transition probabilities (from state row-wise)"+os.linesep)
f.write("#"+os.linesep)
for i in range(self.N):
trans_prob_str = ''
for j in range(self.N):
trans_prob_str += '%f' %(self.A[i][j])+', '
f.write(trans_prob_str[:-2]+os.linesep) # Strip of trailing ', '
f.write(os.linesep)
# Write HMM observation probabilities - - - - - - - - - - - - - - - - - - -
#
f.write("# HMM observation probabilities (state row-wise)"+os.linesep)
f.write("#"+os.linesep)
for i in range(self.N):
obser_prob_str = ''
for j in range(self.M):
obser_prob_str += '%f' %(self.B[i][j])+', '
f.write(obser_prob_str[:-2]+os.linesep) # Strip of trailing ', '
f.write(os.linesep)
f.close()
# A log message - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#
logging.info('HMM save to file: %s' % (file_name))
# ---------------------------------------------------------------------------
def load_hmm(self, file_name):
"""Load a HMM from a text file.
USAGE:
myhmm.load_hmm(file_name)
ARGUMENTS:
file_name The name of the text file from which the HMM is read.
DESCRIPTION:
This routine reads a HMM from a text file as written by the 'save_hmm'
routine (see above).
It is assumed the the HMM data structure is allocated. All elements of
the HMM are overwritten with the newly loaded values.
Empty lines and comment lines (starting with a '#') are skipped over.
"""
# Open file for reading - - - - - - - - - - - - - - - - - - - - - - - - - -
#
try:
f = open(file_name, 'r')
except:
logging.exception('Cannot read from file: %s' % (file_name))
raise IOError
# Skip over header and empty lines - - - - - - - - - - - - - - - - - - - -
#
line = f.readline()
while (line[0] == '#') or (line.strip() == ''):
line = f.readline()
# Read HMM description - - - - - - - - - - - - - - - - - - - - - - - - - -
#
self.description = line.strip() # Remove line separators
# Skip over empty line(s) and comments for states
#
line = f.readline()
while (line[0] == '#') or (line.strip() == ''):
line = f.readline()
# Read HMM states - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#
line = line.strip() # Remove line separators
states = line.split(', ')
self.N = len(states)
self.S = states
# Skip over empty line(s) and comments for observations
#
line = f.readline()
while (line[0] == '#') or (line.strip() == ''):
line = f.readline()
# Read HMM observations - - - - - - - - - - - - - - - - - - - - - - - - - -
#
line = line.strip() # Remove line separators
observations = line.split(', ')
self.M = len(observations)
self.O = observations
# Skip over empty line(s) and comments for initial probabilities
#
line = f.readline()
while (line[0] == '#') or (line.strip() == ''):
line = f.readline()
# Read HMM initial probabilities - - - - - - - - - - - - - - - - - - - - -
#
line = line.strip() # Remove line separators
init_probs = line.split(', ')
if (len(init_probs) != self.N):
logging.exception('Illegal number of initial probabilities in file')
raise Exception
self.pi = []
for init_prob in init_probs:
self.pi.append(float(init_prob))
# Skip over empty line(s) and comments for transition probabilities
#
line = f.readline()
while (line[0] == '#') or (line.strip() == ''):
line = f.readline()
# Read HMM transition probabilities - - - - - - - - - - - - - - - - - - -
#
self.A = []
for i in range(self.N): # Read N lines with data
line = line.strip() # Remove line separators
trans_probs = line.split(', ')
if (len(trans_probs) != self.N):
logging.exception('Illegal number of transition probabilities in file')
raise Exception
tmp_trans_prob = []
for trans_prob in trans_probs:
tmp_trans_prob.append(float(trans_prob))
self.A.append(tmp_trans_prob)
line = f.readline() # Read next line with tansition probabilities
# Skip over empty line(s) and comments for observation probabilities
#
line = f.readline()
while (line[0] == '#') or (line.strip() == ''):
line = f.readline()
# Read HMM observation probabilities - - - - - - - - - - - - - - - - - - -
#
self.B = []
for i in range(self.N): # Read N lines with data
line = line.strip() # Remove line separators
obser_probs = line.split(', ')
if (len(obser_probs) != self.M):
logging.exception('Illegal number of observation probabilities in' + \
' file')
raise Exception
tmp_obser_prob = []
for obser_prob in obser_probs:
tmp_obser_prob.append(float(obser_prob))
self.B.append(tmp_obser_prob)
line = f.readline() # Read next line with tansition probabilities
f.close()
# Make dictionaries with indices of state and observation names - - - - - -
#
self.S_ind = {}
for i in range(self.N):
self.S_ind[self.S[i]] = i
self.O_ind = {}
for i in range(self.M):
self.O_ind[self.O[i]] = i
# A log message - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
#
logging.info('HMM loaded from file: %s' % (file_name))
# ---------------------------------------------------------------------------
def print_hmm(self):
"""Print a HMM.
USAGE:
myhmm.print_hmm()
ARGUMENTS:
None
DESCRIPTION:
Prints a HMM with all its parameters. Only probabilities with values
larger than 0.0 are printed.
"""
msg = [] # Compose a message
state_list = self.S[:] # Make a copy
state_list.sort()
obser_list = self.O[:] # Make a copy
obser_list.sort()
msg.append('Hidden Markov Model')
msg.append(' Description: %s' % (str(self.description)))
msg.append(' States: %s' % (str(state_list)))
msg.append(' Observations: %s' % (str(obser_list)))
msg.append('')
msg.append(' Inital state probabilities:')
for i in range(self.N):
if (self.pi[i] > 0.0):
msg.append(' State: '+self.S[i]+': '+str(self.pi[i]))
msg.append('')
msg.append(' Transition probabilities:')
for i in range(self.N):
msg.append(' From state: '+self.S[i])
for j in range(self.N):
if (self.A[i][j] > 0.0):
msg.append(' to state: '+self.S[j]+': '+str(self.A[i][j]))
msg.append('')
msg.append(' Observation probabilities:')
for i in range(self.N):
msg.append(' In state: '+self.S[i])
for j in range(self.M):
if (self.B[i][j] > 0.0):
msg.append(' Symbol: '+self.O[j]+': '+str(self.B[i][j]))
msg.append('')
for line in msg:
print line
logging.info(line)
# =============================================================================