-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_flux.py
1587 lines (1396 loc) · 57.5 KB
/
train_flux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 Christopher Beckham. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# Original source: https://github.com/linoytsaban/diffusers/blob/flux-fine-tuning/examples/dreambooth/train_dreambooth_flux.py
# (commit hash e4746830c87fa862c4892cc0b8c684646bd2f979)
import torch
import argparse
import subprocess
import diffusers
import copy
import gc
import math
import os
import json
import transformers
import accelerate
from safetensors.torch import save_file
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import FullStateDictConfig, StateDictType
import numpy as np
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, set_seed
from tqdm.auto import tqdm
from transformers import (
CLIPTokenizer,
T5EncoderModel,
T5TokenizerFast,
CLIPTextModel,
)
from time import time
from optimum.quanto import freeze, quantize, qfloat8, qint8, qint4, qint2, QTensor
from diffusers.models.transformers import FluxTransformer2DModel
from diffusers.models.controlnet_flux import FluxControlNetModel as ControlNetFlux
#from diffusers import FluxControlNetPipeline
from src.pipelines.pipeline_flux_controlnet import FluxControlNetPipeline
from src.util_pil import samples_to_rows
from src.util import (
summarise_pipeline,
load_validation_data,
log_validation,
LogGpuMemoryAllocated,
get_free_space_gb,
count_parameters,
count_parameters_state_dict,
check_nan_weights,
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
# FluxTransformer2DModel,
# FluxPipeline,
)
from diffusers.optimization import get_scheduler
from diffusers.training_utils import (
compute_density_for_timestep_sampling,
compute_loss_weighting_for_sd3,
)
from diffusers.utils import (
check_min_version
)
from diffusers.utils.torch_utils import is_compiled_module
from src.util import get_device_memory
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.30.0.dev0")
from src.colored_logger import get_logger
logger = get_logger(__name__)
# If we have less than this amount of free space in GB, quit script
MAX_FREE_SPACE_CUTOFF = 15.0
def unwrap_model(accelerator, model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
def distributed_get_state_dict(accelerator, model, unwrap=True):
if unwrap:
model = unwrap_model(accelerator, model)
full_state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
with FSDP.state_dict_type(
model, StateDictType.FULL_STATE_DICT, full_state_dict_config
):
state_dict = model.state_dict()
return state_dict
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_controlnet_name_or_path",
type=str,
default=None,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_controlnet_safetensors_name", type=str, default=None
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument("--dataset_dir", type=str, default=None)
parser.add_argument("--dataset_py_file", type=str, default="dataset.py")
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument(
"--image_column",
type=str,
default="image",
help="The column of the dataset containing the target image. By "
"default, the standard Image Dataset maps out 'file_name' "
"to 'image'.",
)
parser.add_argument(
"--max_sequence_length",
type=int,
default=77,
help="Maximum sequence length to use with with the T5 text encoder",
)
parser.add_argument(
"--validation_prompt",
type=str,
default=None,
help="A prompt that is used during validation to verify that the model is learning.",
)
parser.add_argument("--validation_conditioning_scale", type=float, default=1.0)
parser.add_argument(
"--num_validation_images",
type=int,
default=2,
help="Number of images that should be generated during validation with `validation_prompt`.",
)
parser.add_argument(
"--validation_epochs",
type=int,
default=50,
help=(
"Run dreambooth validation every X epochs. Dreambooth validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`."
),
)
parser.add_argument(
"--validation_steps",
type=int,
default=100,
help=(
"Run validation every X steps. Validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`"
" and logging the images."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="flux-dreambooth",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--seed", type=int, default=None, help="A seed for reproducible training."
)
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument("--num_layers", type=int, default=2)
parser.add_argument("--num_single_layers", type=int, default=4)
parser.add_argument("--control_mode", type=int, default=None,
help="For a Union-ControlNet, what control mode do we assume?")
parser.add_argument(
"--train_batch_size",
type=int,
default=4,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument("--num_train_epochs", type=int, default=1 )
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
# Added by Chris
parser.add_argument(
"--logging_steps",
type=int,
default=100,
help="Compute and log mean/std over metrics every this many gradient steps",
)
parser.add_argument("--gpu_logging_steps", type=int, default=100)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--guidance_scale",
type=float,
default=4.0,
help="the FLUX.1 dev variant is a guidance distilled model",
)
parser.add_argument(
"--task",
type=str,
choices=["sketch"],
default="sketch",
help="What task are we training on?"
)
parser.add_argument("--save_samples_first_n_steps", type=int, default=2)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps",
type=int,
default=500,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument(
"--lr_power",
type=float,
default=1.0,
help="Power factor of the polynomial scheduler.",
)
parser.add_argument(
"--num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--weighting_scheme",
type=str,
# default="logit_normal",
default="none",
choices=["sigma_sqrt", "logit_normal", "mode", "cosmap", "none"],
)
parser.add_argument(
"--logit_mean",
type=float,
default=0.0,
help="mean to use when using the `'logit_normal'` weighting scheme.",
)
parser.add_argument(
"--logit_std",
type=float,
default=1.0,
help="std to use when using the `'logit_normal'` weighting scheme.",
)
parser.add_argument(
"--mode_scale",
type=float,
default=1.29,
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.",
)
parser.add_argument("--optimizer", type=str, default="adamw", choices=["adamw"])
parser.add_argument(
"--use_8bit_adam",
action="store_true",
help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
)
parser.add_argument(
"--adam_beta1",
type=float,
default=0.9,
help="The beta1 parameter for the Adam and Prodigy optimizers.",
)
parser.add_argument(
"--adam_beta2",
type=float,
default=0.999,
help="The beta2 parameter for the Adam and Prodigy optimizers.",
)
parser.add_argument(
"--adam_weight_decay",
type=float,
default=1e-04,
help="Weight decay to use for unet params",
)
# parser.add_argument(
# "--adam_weight_decay_text_encoder", type=float, default=1e-03, help="Weight decay to use for #text_encoder"
# )
parser.add_argument(
"--adam_epsilon",
type=float,
default=1e-08,
help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
)
parser.add_argument(
"--quantize",
action="store_true",
help="Quantize everything except the controlnet?",
)
parser.add_argument(
"--max_grad_norm", default=1.0, type=float, help="Max gradient norm."
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--validation_path",
type=str,
default="./validation_images",
help="Path to the validation set images / metadata file",
)
parser.add_argument(
"--validation_resolution", type=int, default=1024, help="Generation resolution"
)
parser.add_argument(
"--validation_batch_size",
type=int,
default=2,
help="Batch size per validation image.",
)
parser.add_argument(
"--local_rank",
type=int,
default=-1,
help="For distributed training: local_rank",
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def tokenize_prompt(tokenizer, prompt, max_sequence_length=512):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
return text_input_ids
def _encode_prompt_with_t5(
text_encoder,
tokenizer,
max_sequence_length=512,
prompt=None,
num_images_per_prompt=1,
device=None,
text_input_ids=None,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if tokenizer is not None:
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
else:
if text_input_ids is None:
raise ValueError(
"text_input_ids must be provided when the tokenizer is not specified"
)
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
dtype = text_encoder.dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds
def _encode_prompt_with_clip(
text_encoder,
tokenizer,
prompt: str,
device=None,
text_input_ids=None,
num_images_per_prompt: int = 1,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if tokenizer is not None:
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_overflowing_tokens=False,
return_length=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
else:
if text_input_ids is None:
raise ValueError(
"text_input_ids must be provided when the tokenizer is not specified"
)
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=False)
# Use pooled output of CLIPTextModel
prompt_embeds = prompt_embeds.pooler_output
prompt_embeds = prompt_embeds.to(dtype=text_encoder.dtype, device=device)
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
return prompt_embeds
def encode_prompt(
text_encoders,
tokenizers,
prompt: str,
max_sequence_length,
device=None,
num_images_per_prompt: int = 1,
text_input_ids_list=None,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
dtype = text_encoders[0].dtype
pooled_prompt_embeds = _encode_prompt_with_clip(
text_encoder=text_encoders[0],
tokenizer=tokenizers[0],
prompt=prompt,
device=device if device is not None else text_encoders[0].device,
num_images_per_prompt=num_images_per_prompt,
text_input_ids=text_input_ids_list[0] if text_input_ids_list else None,
)
prompt_embeds = _encode_prompt_with_t5(
text_encoder=text_encoders[1],
tokenizer=tokenizers[1],
max_sequence_length=max_sequence_length,
prompt=prompt,
num_images_per_prompt=num_images_per_prompt,
device=device if device is not None else text_encoders[1].device,
text_input_ids=text_input_ids_list[1] if text_input_ids_list else None,
)
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(
device=device, dtype=dtype
)
text_ids = text_ids.repeat(num_images_per_prompt, 1, 1)
return prompt_embeds, pooled_prompt_embeds, text_ids
from datasets import load_dataset
# Copied from flat_colors_online.py
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
cond_pixel_values = torch.stack(
[example["conditioning_pixel_values"] for example in examples]
)
cond_pixel_values = (
cond_pixel_values[:, 0:3].to(memory_format=torch.contiguous_format).float()
)
img_params = torch.stack(
[torch.FloatTensor(example["img_params"]) for example in examples]
)
crop_params = torch.stack(
[torch.FloatTensor(example["crop_params"]) for example in examples]
)
prompts = [example["text"] for example in examples]
return {
"pixel_values": pixel_values,
"conditioning_pixel_values": cond_pixel_values,
"prompts": prompts,
"img_params": img_params,
"crop_params": crop_params,
}
# Copied from flat_colors_online.py
def get_dataset(
train_data_dir: str,
accelerator,
dataset_py_file: str = "dataset.py",
seed: int = None,
):
"""Load dataset in, shuffle it, and clamp if necessary."""
dataset = load_dataset(
path="{}/{}".format(train_data_dir, dataset_py_file),
data_dir="{}/data".format(train_data_dir),
)
# NOTE(Chris): why is the main_process_first call needed??
with accelerator.main_process_first():
train_dataset = dataset["train"].shuffle(seed=seed)
# if args.max_train_samples is not None:
# train_dataset = train_dataset.select(range(max_train_samples))
return train_dataset
from typing import Union
def load_pipeline(
accelerator,
pretrained_model_name_or_path: str,
revision: str,
variant: str,
pretrained_controlnet_name_or_path: Union[str, None] = None,
controlnet_checkpoint: str = None,
):
# Load the tokenizers
tokenizer_one = CLIPTokenizer.from_pretrained(
pretrained_model_name_or_path,
subfolder="tokenizer",
revision=revision,
)
tokenizer_two = T5TokenizerFast.from_pretrained(
pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=revision,
)
text_encoder_one = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=revision,
variant=variant,
)
text_encoder_two = T5EncoderModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder_2",
revision=revision,
variant=variant,
)
vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path,
subfolder="vae",
revision=revision,
variant=variant,
)
transformer = FluxTransformer2DModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="transformer",
revision=revision,
variant=variant,
)
# NOTE(Chris): if we use FSDP and have > 1 gpu, we have to do this. This is currently
# an unsolved bug: https://github.com/huggingface/transformers/issues/33376
if accelerator.num_processes > 1:
accelerator.wait_for_everyone()
rank = torch.cuda.current_device()
model_state_list = [
text_encoder_one.state_dict(),
text_encoder_two.state_dict(),
]
logger.warning("HACK: broadcasting te1 and te2 to other ranks...")
accelerate.utils.broadcast_object_list(model_state_list, 0)
# After broadcasting, assign the state_dict in all ranks
if rank != 0:
logger.info(f"{rank}: Received model state_dict")
text_encoder_one.load_state_dict(model_state_list[0])
text_encoder_two.load_state_dict(model_state_list[1])
check_nan_weights(text_encoder_one, "text_encoder_one")
check_nan_weights(text_encoder_two, "text_encoder_two")
check_nan_weights(vae, "vae")
check_nan_weights(transformer, "transformer")
# controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny")
if pretrained_controlnet_name_or_path is not None:
logger.info(
f"loading pretrained controlnet from: {pretrained_controlnet_name_or_path}"
)
controlnet = ControlNetFlux.from_pretrained(pretrained_controlnet_name_or_path)
else:
params = dict(
in_channels=64,
pooled_projection_dim=768,
joint_attention_dim=4096,
# hidden_size=3072, # no exist
# mlp_ratio=4.0,
attention_head_dim=128,
num_attention_heads=24,
num_layers=args.num_layers, # 19
num_single_layers=args.num_single_layers, # 38
axes_dims_rope=[16, 56, 56],
# theta=10_000, # no exist
# qkv_bias=True, # no exist
guidance_embeds=True,
)
# logger.info(f"new controlnet from scratch: {params}")
# controlnet = ControlNetFlux(**params)
controlnet = ControlNetFlux(**params)
if controlnet_checkpoint is not None:
logger.info("controlnet_ckpt is: {}".format(controlnet_checkpoint))
ckpt_file = hf_hub_download(
controlnet_checkpoint, filename="controlnet.safetensors"
)
state_dict = load_file(ckpt_file)
controlnet.load_state_dict(state_dict)
pipeline = FluxControlNetPipeline.from_pretrained(
args.pretrained_model_name_or_path,
vae=vae,
text_encoder=text_encoder_one,
text_encoder_2=text_encoder_two,
tokenizer=tokenizer_one,
tokenizer_2=tokenizer_two,
transformer=transformer,
controlnet=controlnet,
)
pipeline.set_progress_bar_config(disable=False)
return pipeline
def main(args):
disable_neptune = True
if "NEPTUNE_PROJECT" in os.environ:
try:
import neptune
from neptune.types import File
except ImportError:
logger.warning("Tried to import neptune but failed. If you require this, please install " + \
"via `pip install neptune`")
disable_neptune = False
if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
# log_with=args.report_to,
# project_config=accelerator_project_config,
kwargs_handlers=[kwargs],
)
# Disable AMP for MPS.
if torch.backends.mps.is_available():
accelerator.native_amp = False
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
with open(os.path.join(args.output_dir, "exp_config.json"), "w") as f:
f.write(json.dumps(vars(args)))
pipeline = load_pipeline(
accelerator,
args.pretrained_model_name_or_path,
args.revision,
args.variant,
args.pretrained_controlnet_name_or_path,
args.pretrained_controlnet_safetensors_name,
)
transformer = pipeline.components["transformer"]
vae = pipeline.components["vae"]
text_encoder_one = pipeline.components["text_encoder"]
text_encoder_two = pipeline.components["text_encoder_2"]
tokenizer_one = pipeline.components["tokenizer"]
tokenizer_two = pipeline.components["tokenizer_2"]
controlnet = pipeline.components["controlnet"]
if hasattr(controlnet, 'union') and controlnet.union:
if args.control_mode is None:
raise ValueError(
"controlnet appears to be union variant, so args.control_mode needs to be specified"
)
# Load scheduler and models
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
args.pretrained_model_name_or_path, subfolder="scheduler"
)
noise_scheduler_copy = copy.deepcopy(noise_scheduler)
# For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
)
transformer = transformer.to(dtype=weight_dtype)
vae = vae.to(dtype=weight_dtype)
text_encoder_one = text_encoder_one.to(dtype=weight_dtype)
text_encoder_two = text_encoder_two.to(dtype=weight_dtype)
controlnet = controlnet.to(dtype=weight_dtype)
# We explicitly do the quantisation step on the CPU so we don't get OOM.
if args.quantize:
# https://github.com/bghira/SimpleTuner/blob/main/documentation/quickstart/FLUX.md
# "Alternatively, you can go ham on quantisation here and run them [text encoders] in
# int4 or int8 mode, because no one can stop you.""
logger.info("quantize all base models...")
quantize(transformer, weights=qint8)
quantize(text_encoder_one, weights=qint8)
quantize(text_encoder_two, weights=qint8)
quantize(vae, weights=qint8)
freeze(transformer)
freeze(text_encoder_one)
freeze(text_encoder_two)
freeze(vae)
with LogGpuMemoryAllocated("to device", logger):
pipeline = pipeline.to(accelerator.device) # dtype=weight_dtype)
transformer.requires_grad_(False)
vae.requires_grad_(False)
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
controlnet.requires_grad_(True)
logger.info(f"controlnet type before prepare(): {type(controlnet)}")
logger.info(
"before prepare, controlnet has apparently {} params".format(
count_parameters(controlnet)[-1]
)
)
#pipeline.controlnet = controlnet
if args.gradient_checkpointing:
# NOTE(Chris): this has not been tested with any of the other flags.
logger.info("Enabling gradient checkpointing with base transformer...")
transformer.enable_gradient_checkpointing()
def load_model_hook(models, input_dir):
for _ in range(len(models)):
# pop models so that they are not loaded again
model = models.pop()
# load diffusers style into model
if isinstance(unwrap_model(model), ControlNetFlux):
load_model = ControlNetFlux.from_pretrained(
input_dir, subfolder="controlnet"
)
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
else:
raise ValueError(f"Unsupported model found: {type(model)=}")
del load_model
gc.collect()
torch.cuda.empty_cache()
# accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32 and torch.cuda.is_available():
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate
* args.gradient_accumulation_steps
* args.train_batch_size
* accelerator.num_processes
)
# Optimization parameters
params_to_optimize = controlnet.parameters()
if args.optimizer == "adamw":
from torch import optim
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
logger.info("Using 8 bit ADAM...")
else:
optimizer_class = torch.optim.AdamW
else:
raise NotImplementedError()
with LogGpuMemoryAllocated("opt", logger):
optimizer = optimizer_class(
params_to_optimize,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
lr=args.learning_rate,
)
train_dataset = get_dataset(
train_data_dir=args.dataset_dir,
accelerator=accelerator,
dataset_py_file=args.dataset_py_file,
seed=args.seed,