-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunning_mean_std.py
46 lines (38 loc) · 1.58 KB
/
running_mean_std.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
class RunningMeanStd(object):
def __init__(self, active=True, epsilon=1e-4, shape=()):
"""
calulates the running mean and std of a data stream
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Parallel_algorithm
:param epsilon: (float) helps with arithmetic issues
:param shape: (tuple) the shape of the data stream's output
"""
self.mean = np.zeros(shape, 'float64')
self.var = np.ones(shape, 'float64')
self.count = epsilon
self.active
def update(self, arr):
batch_mean = np.mean(arr, axis=0)
batch_var = np.var(arr, axis=0)
batch_count = arr.shape[0]
self.update_from_moments(batch_mean, batch_var, batch_count)
def normalize(self, arr):
if self.active:
return (arr - self.mean) / np.sqrt(self.var)
return arr
def denormalize(self, arr):
if self.active:
return (arr * np.sqrt(self.var)) + self.mean
return arr
def update_from_moments(self, batch_mean, batch_var, batch_count):
delta = batch_mean - self.mean
tot_count = self.count + batch_count
new_mean = self.mean + delta * batch_count / tot_count
m_a = self.var * self.count
m_b = batch_var * batch_count
m_2 = m_a + m_b + np.square(delta) * self.count * batch_count / (self.count + batch_count)
new_var = m_2 / (self.count + batch_count)
new_count = batch_count + self.count
self.mean = new_mean
self.var = new_var
self.count = new_count