-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPulseSensor.cpp
144 lines (118 loc) · 5.6 KB
/
PulseSensor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
/*
PulseSensor measurement manager.
See https://www.pulsesensor.com to get started.
Copyright World Famous Electronics LLC - see LICENSE
Contributors:
Joel Murphy, https://pulsesensor.com
Yury Gitman, https://pulsesensor.com
Bradford Needham, @bneedhamia, https://bluepapertech.com
Licensed under the MIT License, a copy of which
should have been included with this software.
This software is not intended for medical use.
*/
// ADAPTED FROM: https://github.com/WorldFamousElectronics/PulseSensorPlayground/blob/master/src/utility/PulseSensor.cpp
#include <PulseSensor.h>
/*
Constructs a Pulse detector that will process PulseSensor voltages
that the caller reads from the PulseSensor.
*/
PulseSensor::PulseSensor() {
sampleIntervalMs = 2;
resetVariables();
}
void PulseSensor::resetVariables() {
for (int i = 0; i < 10; ++i) {
rate[i] = 0;
}
QS = false;
BPM = 0;
IBI = 750; // 750ms per beat = 80 Beats Per Minute (BPM)
Pulse = false;
sampleCounter = 0;
lastBeatTime = 0;
P = 0.5; // peak at 1/2 the input range of 0 to 1
T = 0.5; // trough at 1/2 the input range.
threshSetting = 0.5; // used to seed and reset the thresh variable
thresh = 0.5; // threshold a little above the trough
amp = 0.1; // beat amplitude 1/10 of input range.
firstBeat = true; // looking for the first beat
secondBeat = false; // not yet looking for the second beat in a row
}
void PulseSensor::setSampleIntervalMs(long interval) {
sampleIntervalMs = interval;
}
int PulseSensor::getBeatsPerMinute() {
return BPM;
}
bool PulseSensor::sawStartOfBeat() {
bool started = QS;
QS = false;
return started;
}
int PulseSensor::processLatestSample(float sample) {
Signal = sample;
sampleCounter += sampleIntervalMs; // keep track of the time in mS with this variable
int N = sampleCounter - lastBeatTime; // monitor the time since the last beat to avoid noise
// find the peak and trough of the pulse wave
if (Signal < thresh && N > (IBI / 5) * 3) { // avoid dichrotic noise by waiting 3/5 of last IBI
if (Signal < T) { // T is the trough
T = Signal; // keep track of lowest point in pulse wave
}
}
if (Signal > thresh && Signal > P) { // thresh condition helps avoid noise
P = Signal; // P is the peak
} // keep track of highest point in pulse wave
// NOW IT'S TIME TO LOOK FOR THE HEART BEAT
// signal surges up in value every time there is a pulse
if (N > 350) { // avoid high frequency noise
if ( (Signal > thresh) && (Pulse == false) && (N > (IBI / 5) * 3) ) {
Pulse = true; // set the Pulse flag when we think there is a pulse
IBI = sampleCounter - lastBeatTime; // measure time between beats in mS
lastBeatTime = sampleCounter; // keep track of time for next pulse
if (secondBeat) { // if this is the second beat, if secondBeat == TRUE
secondBeat = false; // clear secondBeat flag
for (int i = 0; i <= 9; i++) { // seed the running total to get a realisitic BPM at startup
rate[i] = IBI;
}
}
if (firstBeat) { // if it's the first time we found a beat, if firstBeat == TRUE
firstBeat = false; // clear firstBeat flag
secondBeat = true; // set the second beat flag
// IBI value is unreliable so discard it
return BPM;
}
// keep a running total of the last 10 IBI values
long runningTotal = 0; // clear the runningTotal variable
for (int i = 0; i <= 8; i++) { // shift data in the rate array
rate[i] = rate[i + 1]; // and drop the oldest IBI value
runningTotal += rate[i]; // add up the 9 oldest IBI values
}
rate[9] = IBI; // add the latest IBI to the rate array
runningTotal += rate[9]; // add the latest IBI to runningTotal
runningTotal /= 10; // average the last 10 IBI values
BPM = 60000 / runningTotal; // how many beats can fit into a minute? that's BPM!
QS = true; // set Quantified Self flag (we detected a beat)
}
}
if (Signal < thresh && Pulse == true) { // when the values are going down, the beat is over
Pulse = false; // reset the Pulse flag so we can do it again
amp = P - T; // get amplitude of the pulse wave
thresh = amp / 2 + T; // set thresh at 50% of the amplitude
P = thresh; // reset these for next time
T = thresh;
}
if (N > 2500) { // if 2.5 seconds go by without a beat
thresh = threshSetting; // set thresh default
P = 0.5; // set P default
T = 0.5; // set T default
lastBeatTime = sampleCounter; // bring the lastBeatTime up to date
firstBeat = true; // set these to avoid noise
secondBeat = false; // when we get the heartbeat back
QS = false;
BPM = 0;
IBI = 600; // 600ms per beat = 100 Beats Per Minute (BPM)
Pulse = false;
amp = 0.1; // beat amplitude 1/10 of input range.
}
return BPM;
}