diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 00000000..e69de29b diff --git a/404.html b/404.html new file mode 100644 index 00000000..d0f450d1 --- /dev/null +++ b/404.html @@ -0,0 +1,130 @@ + + + + + + + + Meggie + + + + + + + + + + + +
+ + +
+ +
+
+
    +
  • +
  • +
  • +
+
+
+
+
+ + +

404

+ +

Page not found

+ + +
+
+ +
+
+ +
+ +
+ +
+ + + + + +
+ + + + + + + + + diff --git a/about/index.html b/about/index.html new file mode 100644 index 00000000..bb807155 --- /dev/null +++ b/about/index.html @@ -0,0 +1,159 @@ + + + + + + + + About - Meggie + + + + + + + + + + + + + +
+ + +
+ +
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ +

About Meggie

+

Developed at the Jyväskylä Centre for Interdisciplinary Brain Research (CIBR), Meggie is the result of a project that started in 2013, with the mission to make sophisticated M/EEG analysis accessible to all researchers. Meggie builds upon the MNE-Python library to deliver a robust set of features through an intuitive interface.

+

Design Philosophy

+

Meggie focuses on:

+
    +
  1. Multi-Subject Management: It makes it easy to work with many subjects' data at once.
  2. +
  3. Clear Analysis Steps: It helps users go step by step from starting data to results.
  4. +
+

Compared to other tools like FieldTrip, MNE-Python, EEGLAB, Brainstorm, and mnelab, Meggie is unique because it's built with Python, it's easy for anyone to use, and it's designed for handling multiple subjects' data efficiently.

+

Plugins

+

Meggie can be changed and added to with plugins. If you know Python, you can create new features. This helps Meggie grow and helps everyone who uses it.

+

To learn more, see our Developer Documentation.

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + « Previous + + + Next » + + +
+ + + + + + + + + diff --git a/css/fonts/Roboto-Slab-Bold.woff b/css/fonts/Roboto-Slab-Bold.woff new file mode 100644 index 00000000..6cb60000 Binary files /dev/null and b/css/fonts/Roboto-Slab-Bold.woff differ diff --git a/css/fonts/Roboto-Slab-Bold.woff2 b/css/fonts/Roboto-Slab-Bold.woff2 new file mode 100644 index 00000000..7059e231 Binary files /dev/null and b/css/fonts/Roboto-Slab-Bold.woff2 differ diff --git a/css/fonts/Roboto-Slab-Regular.woff b/css/fonts/Roboto-Slab-Regular.woff new file mode 100644 index 00000000..f815f63f Binary files /dev/null and b/css/fonts/Roboto-Slab-Regular.woff differ diff --git a/css/fonts/Roboto-Slab-Regular.woff2 b/css/fonts/Roboto-Slab-Regular.woff2 new file mode 100644 index 00000000..f2c76e5b Binary files /dev/null and b/css/fonts/Roboto-Slab-Regular.woff2 differ diff --git a/css/fonts/fontawesome-webfont.eot b/css/fonts/fontawesome-webfont.eot new file mode 100644 index 00000000..e9f60ca9 Binary files /dev/null and b/css/fonts/fontawesome-webfont.eot differ diff --git a/css/fonts/fontawesome-webfont.svg b/css/fonts/fontawesome-webfont.svg new file mode 100644 index 00000000..855c845e --- /dev/null +++ b/css/fonts/fontawesome-webfont.svg @@ -0,0 +1,2671 @@ + + + + +Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 + By ,,, +Copyright Dave Gandy 2016. All rights reserved. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/css/fonts/fontawesome-webfont.ttf b/css/fonts/fontawesome-webfont.ttf new file mode 100644 index 00000000..35acda2f Binary files /dev/null and b/css/fonts/fontawesome-webfont.ttf differ diff --git a/css/fonts/fontawesome-webfont.woff b/css/fonts/fontawesome-webfont.woff new file mode 100644 index 00000000..400014a4 Binary files /dev/null and b/css/fonts/fontawesome-webfont.woff differ diff --git a/css/fonts/fontawesome-webfont.woff2 b/css/fonts/fontawesome-webfont.woff2 new file mode 100644 index 00000000..4d13fc60 Binary files /dev/null and b/css/fonts/fontawesome-webfont.woff2 differ diff --git a/css/fonts/lato-bold-italic.woff b/css/fonts/lato-bold-italic.woff new file mode 100644 index 00000000..88ad05b9 Binary files /dev/null and b/css/fonts/lato-bold-italic.woff differ diff --git a/css/fonts/lato-bold-italic.woff2 b/css/fonts/lato-bold-italic.woff2 new file mode 100644 index 00000000..c4e3d804 Binary files /dev/null and b/css/fonts/lato-bold-italic.woff2 differ diff --git a/css/fonts/lato-bold.woff b/css/fonts/lato-bold.woff new file mode 100644 index 00000000..c6dff51f Binary files /dev/null and b/css/fonts/lato-bold.woff differ diff --git a/css/fonts/lato-bold.woff2 b/css/fonts/lato-bold.woff2 new file mode 100644 index 00000000..bb195043 Binary files /dev/null and b/css/fonts/lato-bold.woff2 differ diff --git a/css/fonts/lato-normal-italic.woff b/css/fonts/lato-normal-italic.woff new file mode 100644 index 00000000..76114bc0 Binary files /dev/null and b/css/fonts/lato-normal-italic.woff differ diff --git a/css/fonts/lato-normal-italic.woff2 b/css/fonts/lato-normal-italic.woff2 new file mode 100644 index 00000000..3404f37e Binary files /dev/null and b/css/fonts/lato-normal-italic.woff2 differ diff --git a/css/fonts/lato-normal.woff b/css/fonts/lato-normal.woff new file mode 100644 index 00000000..ae1307ff Binary files /dev/null and b/css/fonts/lato-normal.woff differ diff --git a/css/fonts/lato-normal.woff2 b/css/fonts/lato-normal.woff2 new file mode 100644 index 00000000..3bf98433 Binary files /dev/null and b/css/fonts/lato-normal.woff2 differ diff --git a/css/theme.css b/css/theme.css new file mode 100644 index 00000000..ad773009 --- /dev/null +++ b/css/theme.css @@ -0,0 +1,13 @@ +/* + * This file is copied from the upstream ReadTheDocs Sphinx + * theme. To aid upgradability this file should *not* be edited. + * modifications we need should be included in theme_extra.css. + * + * https://github.com/readthedocs/sphinx_rtd_theme + */ + + /* sphinx_rtd_theme version 1.2.0 | MIT license */ +html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*! + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel{border:1px solid #7fbbe3;background:#e7f2fa;font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block} diff --git a/css/theme_extra.css b/css/theme_extra.css new file mode 100644 index 00000000..9f4b063c --- /dev/null +++ b/css/theme_extra.css @@ -0,0 +1,191 @@ +/* + * Wrap inline code samples otherwise they shoot of the side and + * can't be read at all. + * + * https://github.com/mkdocs/mkdocs/issues/313 + * https://github.com/mkdocs/mkdocs/issues/233 + * https://github.com/mkdocs/mkdocs/issues/834 + */ +.rst-content code { + white-space: pre-wrap; + word-wrap: break-word; + padding: 2px 5px; +} + +/** + * Make code blocks display as blocks and give them the appropriate + * font size and padding. + * + * https://github.com/mkdocs/mkdocs/issues/855 + * https://github.com/mkdocs/mkdocs/issues/834 + * https://github.com/mkdocs/mkdocs/issues/233 + */ +.rst-content pre code { + white-space: pre; + word-wrap: normal; + display: block; + padding: 12px; + font-size: 12px; +} + +/** + * Fix code colors + * + * https://github.com/mkdocs/mkdocs/issues/2027 + */ +.rst-content code { + color: #E74C3C; +} + +.rst-content pre code { + color: #000; + background: #f8f8f8; +} + +/* + * Fix link colors when the link text is inline code. + * + * https://github.com/mkdocs/mkdocs/issues/718 + */ +a code { + color: #2980B9; +} +a:hover code { + color: #3091d1; +} +a:visited code { + color: #9B59B6; +} + +/* + * The CSS classes from highlight.js seem to clash with the + * ReadTheDocs theme causing some code to be incorrectly made + * bold and italic. + * + * https://github.com/mkdocs/mkdocs/issues/411 + */ +pre .cs, pre .c { + font-weight: inherit; + font-style: inherit; +} + +/* + * Fix some issues with the theme and non-highlighted code + * samples. Without and highlighting styles attached the + * formatting is broken. + * + * https://github.com/mkdocs/mkdocs/issues/319 + */ +.rst-content .no-highlight { + display: block; + padding: 0.5em; + color: #333; +} + + +/* + * Additions specific to the search functionality provided by MkDocs + */ + +.search-results { + margin-top: 23px; +} + +.search-results article { + border-top: 1px solid #E1E4E5; + padding-top: 24px; +} + +.search-results article:first-child { + border-top: none; +} + +form .search-query { + width: 100%; + border-radius: 50px; + padding: 6px 12px; /* csslint allow: box-model */ + border-color: #D1D4D5; +} + +/* + * Improve inline code blocks within admonitions. + * + * https://github.com/mkdocs/mkdocs/issues/656 + */ + .rst-content .admonition code { + color: #404040; + border: 1px solid #c7c9cb; + border: 1px solid rgba(0, 0, 0, 0.2); + background: #f8fbfd; + background: rgba(255, 255, 255, 0.7); +} + +/* + * Account for wide tables which go off the side. + * Override borders to avoid weirdness on narrow tables. + * + * https://github.com/mkdocs/mkdocs/issues/834 + * https://github.com/mkdocs/mkdocs/pull/1034 + */ +.rst-content .section .docutils { + width: 100%; + overflow: auto; + display: block; + border: none; +} + +td, th { + border: 1px solid #e1e4e5 !important; /* csslint allow: important */ + border-collapse: collapse; +} + +/* + * Without the following amendments, the navigation in the theme will be + * slightly cut off. This is due to the fact that the .wy-nav-side has a + * padding-bottom of 2em, which must not necessarily align with the font-size of + * 90 % on the .rst-current-version container, combined with the padding of 12px + * above and below. These amendments fix this in two steps: First, make sure the + * .rst-current-version container has a fixed height of 40px, achieved using + * line-height, and then applying a padding-bottom of 40px to this container. In + * a second step, the items within that container are re-aligned using flexbox. + * + * https://github.com/mkdocs/mkdocs/issues/2012 + */ + .wy-nav-side { + padding-bottom: 40px; +} + +/* + * The second step of above amendment: Here we make sure the items are aligned + * correctly within the .rst-current-version container. Using flexbox, we + * achieve it in such a way that it will look like the following: + * + * [No repo_name] + * Next >> // On the first page + * << Previous Next >> // On all subsequent pages + * + * [With repo_name] + * Next >> // On the first page + * << Previous Next >> // On all subsequent pages + * + * https://github.com/mkdocs/mkdocs/issues/2012 + */ +.rst-versions .rst-current-version { + padding: 0 12px; + display: flex; + font-size: initial; + justify-content: space-between; + align-items: center; + line-height: 40px; +} + +/* + * Please note that this amendment also involves removing certain inline-styles + * from the file ./mkdocs/themes/readthedocs/versions.html. + * + * https://github.com/mkdocs/mkdocs/issues/2012 + */ +.rst-current-version span { + flex: 1; + text-align: center; +} diff --git a/developer-guide/architecture/index.html b/developer-guide/architecture/index.html new file mode 100644 index 00000000..2d1faacc --- /dev/null +++ b/developer-guide/architecture/index.html @@ -0,0 +1,195 @@ + + + + + + + + Architecture - Meggie + + + + + + + + + + + + + +
+ + +
+ +
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Architecture Overview

+

This document outlines the core structure of Meggie, offering insights into its construction and how developers can leverage its architecture.

+

Main Classes

+

Meggie is structured around three fundamental classes:

+

MainWindow

+

MainWindow is the central hub of the user interface, built using PyQt5. Key components include:

+
    +
  • Left Panel: Displays experiment-specific details.
  • +
  • Bottom Console: Logs user actions and system messages.
  • +
  • Right Panel: Hosts tabs for data transformation actions.
  • +
+

Experiment

+

The Experiment class serves as the top-level container for all data, handling the saving and loading of experiments, and maintaining a collection of subjects.

+

Subject

+

Subject instances are nested within experiments and are tasked with managing subject-specific data. Their primary roles are to handle the saving and loading of raw data and to hold instances of various datatypes.

+

Actions, Pipelines, and Datatypes

+

Meggie's analytical capabilities are structured into actions, pipelines, and datatypes.

+

Datatypes

+

Datatypes are templates for summarizing raw data into meaningful structures for analysis, such as epochs, evokeds, spectrums, and TFRs. These templates are defined within the datatypes folder and instantiated as needed to store within subjects.

+

Actions

+

Actions represent fundamental analysis steps, like "filter" or "create epochs." Each action, located in its respective folder within the actions directory, comprises metadata in configuration.json and Python code. Actions inherit from the Action class in mainwindow/dynamic.py and can be integrated into pipelines and are automatically logged.

+

Pipelines

+

Pipelines organize actions into a sequence represented as buttons within the GUI tabs. They guide the user through a complete analysis workflow, such as "Sensor-level continuous data analysis." Pipelines are specified in the main configuration.json and rely on actions for implementation, thus containing no Python code themselves.

+

Plugins

+

Creating plugins for Meggie is designed to be straightforward. The system dynamically locates pipelines, datatypes, and actions at runtime, allowing them to be loaded from external Python packages within the Meggie namespace. To create a plugin, one simply needs to develop a Python package named within the Meggie namespace that introduces new pipelines, actions, and/or datatypes.

+

API

+

The core of Meggie, excluding the actions, is intended to be stable and reusable. Plugin developers are encouraged to utilize the API provided by the MainWindow, Subject, and Experiment classes. Additionally, developers have access to the four datatypes in the datatypes folder and various utilities, including functions, dialogs, and widgets, found in the utilities folder.

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + « Previous + + + Next » + + +
+ + + + + + + + + diff --git a/developer-guide/development/index.html b/developer-guide/development/index.html new file mode 100644 index 00000000..7b00b0bd --- /dev/null +++ b/developer-guide/development/index.html @@ -0,0 +1,147 @@ + + + + + + + + Development - Meggie + + + + + + + + + + + + + +
+ + +
+ +
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Development

+

Setting up

+

For an example of a basic plugin template, please visit Meggie Simple Plugin on GitHub.

+

Actions, pipelines, and datatypes function identically, regardless of whether they originate from a plugin or from the core of Meggie. Therefore, examining the implementations within the Meggie repository is advisable for understanding their integration and usage.

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + « Previous + + + +
+ + + + + + + + + diff --git a/img/favicon.ico b/img/favicon.ico new file mode 100644 index 00000000..e85006a3 Binary files /dev/null and b/img/favicon.ico differ diff --git a/index.html b/index.html new file mode 100644 index 00000000..a6656984 --- /dev/null +++ b/index.html @@ -0,0 +1,157 @@ + + + + + + + + Meggie + + + + + + + + + + + + + +
+ + +
+ +
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ +

Welcome to Meggie

+

Meggie is an open-source software designed for intuitive MEG and EEG analysis. With its user-friendly graphical interface, Meggie brings the powerful analysis methods of MNE-Python to researchers without requiring programming skills.

+

Key Features

+
    +
  • Cross-Platform: Runs on Linux, macOS, and Windows.
  • +
  • User-Friendly: Simple graphical user interface for ease of use.
  • +
  • Efficient Workflows: Supports multi-subject experiments and pipeline processing for streamlined analysis.
  • +
+

Get started with Meggie and explore its features to simplify your MEG/EEG analysis.

+

Getting Started

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + + Next » + + +
+ + + + + + + + + + + diff --git a/js/html5shiv.min.js b/js/html5shiv.min.js new file mode 100644 index 00000000..1a01c94b --- /dev/null +++ b/js/html5shiv.min.js @@ -0,0 +1,4 @@ +/** +* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed +*/ +!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document); diff --git a/js/jquery-3.6.0.min.js b/js/jquery-3.6.0.min.js new file mode 100644 index 00000000..c4c6022f --- /dev/null +++ b/js/jquery-3.6.0.min.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0"),n("table.docutils.footnote").wrap("
"),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t + + + + + + + Meggie + + + + + + + + + + + +
+ + +
+ +
+
+
    +
  • +
  • +
  • +
+
+
+
+
+ + +

Search Results

+ + + +
+ Searching... +
+ + +
+
+ +
+
+ +
+ +
+ +
+ + + + + +
+ + + + + + + + + diff --git a/search/lunr.js b/search/lunr.js new file mode 100644 index 00000000..aca0a167 --- /dev/null +++ b/search/lunr.js @@ -0,0 +1,3475 @@ +/** + * lunr - http://lunrjs.com - A bit like Solr, but much smaller and not as bright - 2.3.9 + * Copyright (C) 2020 Oliver Nightingale + * @license MIT + */ + +;(function(){ + +/** + * A convenience function for configuring and constructing + * a new lunr Index. + * + * A lunr.Builder instance is created and the pipeline setup + * with a trimmer, stop word filter and stemmer. + * + * This builder object is yielded to the configuration function + * that is passed as a parameter, allowing the list of fields + * and other builder parameters to be customised. + * + * All documents _must_ be added within the passed config function. + * + * @example + * var idx = lunr(function () { + * this.field('title') + * this.field('body') + * this.ref('id') + * + * documents.forEach(function (doc) { + * this.add(doc) + * }, this) + * }) + * + * @see {@link lunr.Builder} + * @see {@link lunr.Pipeline} + * @see {@link lunr.trimmer} + * @see {@link lunr.stopWordFilter} + * @see {@link lunr.stemmer} + * @namespace {function} lunr + */ +var lunr = function (config) { + var builder = new lunr.Builder + + builder.pipeline.add( + lunr.trimmer, + lunr.stopWordFilter, + lunr.stemmer + ) + + builder.searchPipeline.add( + lunr.stemmer + ) + + config.call(builder, builder) + return builder.build() +} + +lunr.version = "2.3.9" +/*! + * lunr.utils + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * A namespace containing utils for the rest of the lunr library + * @namespace lunr.utils + */ +lunr.utils = {} + +/** + * Print a warning message to the console. + * + * @param {String} message The message to be printed. + * @memberOf lunr.utils + * @function + */ +lunr.utils.warn = (function (global) { + /* eslint-disable no-console */ + return function (message) { + if (global.console && console.warn) { + console.warn(message) + } + } + /* eslint-enable no-console */ +})(this) + +/** + * Convert an object to a string. + * + * In the case of `null` and `undefined` the function returns + * the empty string, in all other cases the result of calling + * `toString` on the passed object is returned. + * + * @param {Any} obj The object to convert to a string. + * @return {String} string representation of the passed object. + * @memberOf lunr.utils + */ +lunr.utils.asString = function (obj) { + if (obj === void 0 || obj === null) { + return "" + } else { + return obj.toString() + } +} + +/** + * Clones an object. + * + * Will create a copy of an existing object such that any mutations + * on the copy cannot affect the original. + * + * Only shallow objects are supported, passing a nested object to this + * function will cause a TypeError. + * + * Objects with primitives, and arrays of primitives are supported. + * + * @param {Object} obj The object to clone. + * @return {Object} a clone of the passed object. + * @throws {TypeError} when a nested object is passed. + * @memberOf Utils + */ +lunr.utils.clone = function (obj) { + if (obj === null || obj === undefined) { + return obj + } + + var clone = Object.create(null), + keys = Object.keys(obj) + + for (var i = 0; i < keys.length; i++) { + var key = keys[i], + val = obj[key] + + if (Array.isArray(val)) { + clone[key] = val.slice() + continue + } + + if (typeof val === 'string' || + typeof val === 'number' || + typeof val === 'boolean') { + clone[key] = val + continue + } + + throw new TypeError("clone is not deep and does not support nested objects") + } + + return clone +} +lunr.FieldRef = function (docRef, fieldName, stringValue) { + this.docRef = docRef + this.fieldName = fieldName + this._stringValue = stringValue +} + +lunr.FieldRef.joiner = "/" + +lunr.FieldRef.fromString = function (s) { + var n = s.indexOf(lunr.FieldRef.joiner) + + if (n === -1) { + throw "malformed field ref string" + } + + var fieldRef = s.slice(0, n), + docRef = s.slice(n + 1) + + return new lunr.FieldRef (docRef, fieldRef, s) +} + +lunr.FieldRef.prototype.toString = function () { + if (this._stringValue == undefined) { + this._stringValue = this.fieldName + lunr.FieldRef.joiner + this.docRef + } + + return this._stringValue +} +/*! + * lunr.Set + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * A lunr set. + * + * @constructor + */ +lunr.Set = function (elements) { + this.elements = Object.create(null) + + if (elements) { + this.length = elements.length + + for (var i = 0; i < this.length; i++) { + this.elements[elements[i]] = true + } + } else { + this.length = 0 + } +} + +/** + * A complete set that contains all elements. + * + * @static + * @readonly + * @type {lunr.Set} + */ +lunr.Set.complete = { + intersect: function (other) { + return other + }, + + union: function () { + return this + }, + + contains: function () { + return true + } +} + +/** + * An empty set that contains no elements. + * + * @static + * @readonly + * @type {lunr.Set} + */ +lunr.Set.empty = { + intersect: function () { + return this + }, + + union: function (other) { + return other + }, + + contains: function () { + return false + } +} + +/** + * Returns true if this set contains the specified object. + * + * @param {object} object - Object whose presence in this set is to be tested. + * @returns {boolean} - True if this set contains the specified object. + */ +lunr.Set.prototype.contains = function (object) { + return !!this.elements[object] +} + +/** + * Returns a new set containing only the elements that are present in both + * this set and the specified set. + * + * @param {lunr.Set} other - set to intersect with this set. + * @returns {lunr.Set} a new set that is the intersection of this and the specified set. + */ + +lunr.Set.prototype.intersect = function (other) { + var a, b, elements, intersection = [] + + if (other === lunr.Set.complete) { + return this + } + + if (other === lunr.Set.empty) { + return other + } + + if (this.length < other.length) { + a = this + b = other + } else { + a = other + b = this + } + + elements = Object.keys(a.elements) + + for (var i = 0; i < elements.length; i++) { + var element = elements[i] + if (element in b.elements) { + intersection.push(element) + } + } + + return new lunr.Set (intersection) +} + +/** + * Returns a new set combining the elements of this and the specified set. + * + * @param {lunr.Set} other - set to union with this set. + * @return {lunr.Set} a new set that is the union of this and the specified set. + */ + +lunr.Set.prototype.union = function (other) { + if (other === lunr.Set.complete) { + return lunr.Set.complete + } + + if (other === lunr.Set.empty) { + return this + } + + return new lunr.Set(Object.keys(this.elements).concat(Object.keys(other.elements))) +} +/** + * A function to calculate the inverse document frequency for + * a posting. This is shared between the builder and the index + * + * @private + * @param {object} posting - The posting for a given term + * @param {number} documentCount - The total number of documents. + */ +lunr.idf = function (posting, documentCount) { + var documentsWithTerm = 0 + + for (var fieldName in posting) { + if (fieldName == '_index') continue // Ignore the term index, its not a field + documentsWithTerm += Object.keys(posting[fieldName]).length + } + + var x = (documentCount - documentsWithTerm + 0.5) / (documentsWithTerm + 0.5) + + return Math.log(1 + Math.abs(x)) +} + +/** + * A token wraps a string representation of a token + * as it is passed through the text processing pipeline. + * + * @constructor + * @param {string} [str=''] - The string token being wrapped. + * @param {object} [metadata={}] - Metadata associated with this token. + */ +lunr.Token = function (str, metadata) { + this.str = str || "" + this.metadata = metadata || {} +} + +/** + * Returns the token string that is being wrapped by this object. + * + * @returns {string} + */ +lunr.Token.prototype.toString = function () { + return this.str +} + +/** + * A token update function is used when updating or optionally + * when cloning a token. + * + * @callback lunr.Token~updateFunction + * @param {string} str - The string representation of the token. + * @param {Object} metadata - All metadata associated with this token. + */ + +/** + * Applies the given function to the wrapped string token. + * + * @example + * token.update(function (str, metadata) { + * return str.toUpperCase() + * }) + * + * @param {lunr.Token~updateFunction} fn - A function to apply to the token string. + * @returns {lunr.Token} + */ +lunr.Token.prototype.update = function (fn) { + this.str = fn(this.str, this.metadata) + return this +} + +/** + * Creates a clone of this token. Optionally a function can be + * applied to the cloned token. + * + * @param {lunr.Token~updateFunction} [fn] - An optional function to apply to the cloned token. + * @returns {lunr.Token} + */ +lunr.Token.prototype.clone = function (fn) { + fn = fn || function (s) { return s } + return new lunr.Token (fn(this.str, this.metadata), this.metadata) +} +/*! + * lunr.tokenizer + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * A function for splitting a string into tokens ready to be inserted into + * the search index. Uses `lunr.tokenizer.separator` to split strings, change + * the value of this property to change how strings are split into tokens. + * + * This tokenizer will convert its parameter to a string by calling `toString` and + * then will split this string on the character in `lunr.tokenizer.separator`. + * Arrays will have their elements converted to strings and wrapped in a lunr.Token. + * + * Optional metadata can be passed to the tokenizer, this metadata will be cloned and + * added as metadata to every token that is created from the object to be tokenized. + * + * @static + * @param {?(string|object|object[])} obj - The object to convert into tokens + * @param {?object} metadata - Optional metadata to associate with every token + * @returns {lunr.Token[]} + * @see {@link lunr.Pipeline} + */ +lunr.tokenizer = function (obj, metadata) { + if (obj == null || obj == undefined) { + return [] + } + + if (Array.isArray(obj)) { + return obj.map(function (t) { + return new lunr.Token( + lunr.utils.asString(t).toLowerCase(), + lunr.utils.clone(metadata) + ) + }) + } + + var str = obj.toString().toLowerCase(), + len = str.length, + tokens = [] + + for (var sliceEnd = 0, sliceStart = 0; sliceEnd <= len; sliceEnd++) { + var char = str.charAt(sliceEnd), + sliceLength = sliceEnd - sliceStart + + if ((char.match(lunr.tokenizer.separator) || sliceEnd == len)) { + + if (sliceLength > 0) { + var tokenMetadata = lunr.utils.clone(metadata) || {} + tokenMetadata["position"] = [sliceStart, sliceLength] + tokenMetadata["index"] = tokens.length + + tokens.push( + new lunr.Token ( + str.slice(sliceStart, sliceEnd), + tokenMetadata + ) + ) + } + + sliceStart = sliceEnd + 1 + } + + } + + return tokens +} + +/** + * The separator used to split a string into tokens. Override this property to change the behaviour of + * `lunr.tokenizer` behaviour when tokenizing strings. By default this splits on whitespace and hyphens. + * + * @static + * @see lunr.tokenizer + */ +lunr.tokenizer.separator = /[\s\-]+/ +/*! + * lunr.Pipeline + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * lunr.Pipelines maintain an ordered list of functions to be applied to all + * tokens in documents entering the search index and queries being ran against + * the index. + * + * An instance of lunr.Index created with the lunr shortcut will contain a + * pipeline with a stop word filter and an English language stemmer. Extra + * functions can be added before or after either of these functions or these + * default functions can be removed. + * + * When run the pipeline will call each function in turn, passing a token, the + * index of that token in the original list of all tokens and finally a list of + * all the original tokens. + * + * The output of functions in the pipeline will be passed to the next function + * in the pipeline. To exclude a token from entering the index the function + * should return undefined, the rest of the pipeline will not be called with + * this token. + * + * For serialisation of pipelines to work, all functions used in an instance of + * a pipeline should be registered with lunr.Pipeline. Registered functions can + * then be loaded. If trying to load a serialised pipeline that uses functions + * that are not registered an error will be thrown. + * + * If not planning on serialising the pipeline then registering pipeline functions + * is not necessary. + * + * @constructor + */ +lunr.Pipeline = function () { + this._stack = [] +} + +lunr.Pipeline.registeredFunctions = Object.create(null) + +/** + * A pipeline function maps lunr.Token to lunr.Token. A lunr.Token contains the token + * string as well as all known metadata. A pipeline function can mutate the token string + * or mutate (or add) metadata for a given token. + * + * A pipeline function can indicate that the passed token should be discarded by returning + * null, undefined or an empty string. This token will not be passed to any downstream pipeline + * functions and will not be added to the index. + * + * Multiple tokens can be returned by returning an array of tokens. Each token will be passed + * to any downstream pipeline functions and all will returned tokens will be added to the index. + * + * Any number of pipeline functions may be chained together using a lunr.Pipeline. + * + * @interface lunr.PipelineFunction + * @param {lunr.Token} token - A token from the document being processed. + * @param {number} i - The index of this token in the complete list of tokens for this document/field. + * @param {lunr.Token[]} tokens - All tokens for this document/field. + * @returns {(?lunr.Token|lunr.Token[])} + */ + +/** + * Register a function with the pipeline. + * + * Functions that are used in the pipeline should be registered if the pipeline + * needs to be serialised, or a serialised pipeline needs to be loaded. + * + * Registering a function does not add it to a pipeline, functions must still be + * added to instances of the pipeline for them to be used when running a pipeline. + * + * @param {lunr.PipelineFunction} fn - The function to check for. + * @param {String} label - The label to register this function with + */ +lunr.Pipeline.registerFunction = function (fn, label) { + if (label in this.registeredFunctions) { + lunr.utils.warn('Overwriting existing registered function: ' + label) + } + + fn.label = label + lunr.Pipeline.registeredFunctions[fn.label] = fn +} + +/** + * Warns if the function is not registered as a Pipeline function. + * + * @param {lunr.PipelineFunction} fn - The function to check for. + * @private + */ +lunr.Pipeline.warnIfFunctionNotRegistered = function (fn) { + var isRegistered = fn.label && (fn.label in this.registeredFunctions) + + if (!isRegistered) { + lunr.utils.warn('Function is not registered with pipeline. This may cause problems when serialising the index.\n', fn) + } +} + +/** + * Loads a previously serialised pipeline. + * + * All functions to be loaded must already be registered with lunr.Pipeline. + * If any function from the serialised data has not been registered then an + * error will be thrown. + * + * @param {Object} serialised - The serialised pipeline to load. + * @returns {lunr.Pipeline} + */ +lunr.Pipeline.load = function (serialised) { + var pipeline = new lunr.Pipeline + + serialised.forEach(function (fnName) { + var fn = lunr.Pipeline.registeredFunctions[fnName] + + if (fn) { + pipeline.add(fn) + } else { + throw new Error('Cannot load unregistered function: ' + fnName) + } + }) + + return pipeline +} + +/** + * Adds new functions to the end of the pipeline. + * + * Logs a warning if the function has not been registered. + * + * @param {lunr.PipelineFunction[]} functions - Any number of functions to add to the pipeline. + */ +lunr.Pipeline.prototype.add = function () { + var fns = Array.prototype.slice.call(arguments) + + fns.forEach(function (fn) { + lunr.Pipeline.warnIfFunctionNotRegistered(fn) + this._stack.push(fn) + }, this) +} + +/** + * Adds a single function after a function that already exists in the + * pipeline. + * + * Logs a warning if the function has not been registered. + * + * @param {lunr.PipelineFunction} existingFn - A function that already exists in the pipeline. + * @param {lunr.PipelineFunction} newFn - The new function to add to the pipeline. + */ +lunr.Pipeline.prototype.after = function (existingFn, newFn) { + lunr.Pipeline.warnIfFunctionNotRegistered(newFn) + + var pos = this._stack.indexOf(existingFn) + if (pos == -1) { + throw new Error('Cannot find existingFn') + } + + pos = pos + 1 + this._stack.splice(pos, 0, newFn) +} + +/** + * Adds a single function before a function that already exists in the + * pipeline. + * + * Logs a warning if the function has not been registered. + * + * @param {lunr.PipelineFunction} existingFn - A function that already exists in the pipeline. + * @param {lunr.PipelineFunction} newFn - The new function to add to the pipeline. + */ +lunr.Pipeline.prototype.before = function (existingFn, newFn) { + lunr.Pipeline.warnIfFunctionNotRegistered(newFn) + + var pos = this._stack.indexOf(existingFn) + if (pos == -1) { + throw new Error('Cannot find existingFn') + } + + this._stack.splice(pos, 0, newFn) +} + +/** + * Removes a function from the pipeline. + * + * @param {lunr.PipelineFunction} fn The function to remove from the pipeline. + */ +lunr.Pipeline.prototype.remove = function (fn) { + var pos = this._stack.indexOf(fn) + if (pos == -1) { + return + } + + this._stack.splice(pos, 1) +} + +/** + * Runs the current list of functions that make up the pipeline against the + * passed tokens. + * + * @param {Array} tokens The tokens to run through the pipeline. + * @returns {Array} + */ +lunr.Pipeline.prototype.run = function (tokens) { + var stackLength = this._stack.length + + for (var i = 0; i < stackLength; i++) { + var fn = this._stack[i] + var memo = [] + + for (var j = 0; j < tokens.length; j++) { + var result = fn(tokens[j], j, tokens) + + if (result === null || result === void 0 || result === '') continue + + if (Array.isArray(result)) { + for (var k = 0; k < result.length; k++) { + memo.push(result[k]) + } + } else { + memo.push(result) + } + } + + tokens = memo + } + + return tokens +} + +/** + * Convenience method for passing a string through a pipeline and getting + * strings out. This method takes care of wrapping the passed string in a + * token and mapping the resulting tokens back to strings. + * + * @param {string} str - The string to pass through the pipeline. + * @param {?object} metadata - Optional metadata to associate with the token + * passed to the pipeline. + * @returns {string[]} + */ +lunr.Pipeline.prototype.runString = function (str, metadata) { + var token = new lunr.Token (str, metadata) + + return this.run([token]).map(function (t) { + return t.toString() + }) +} + +/** + * Resets the pipeline by removing any existing processors. + * + */ +lunr.Pipeline.prototype.reset = function () { + this._stack = [] +} + +/** + * Returns a representation of the pipeline ready for serialisation. + * + * Logs a warning if the function has not been registered. + * + * @returns {Array} + */ +lunr.Pipeline.prototype.toJSON = function () { + return this._stack.map(function (fn) { + lunr.Pipeline.warnIfFunctionNotRegistered(fn) + + return fn.label + }) +} +/*! + * lunr.Vector + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * A vector is used to construct the vector space of documents and queries. These + * vectors support operations to determine the similarity between two documents or + * a document and a query. + * + * Normally no parameters are required for initializing a vector, but in the case of + * loading a previously dumped vector the raw elements can be provided to the constructor. + * + * For performance reasons vectors are implemented with a flat array, where an elements + * index is immediately followed by its value. E.g. [index, value, index, value]. This + * allows the underlying array to be as sparse as possible and still offer decent + * performance when being used for vector calculations. + * + * @constructor + * @param {Number[]} [elements] - The flat list of element index and element value pairs. + */ +lunr.Vector = function (elements) { + this._magnitude = 0 + this.elements = elements || [] +} + + +/** + * Calculates the position within the vector to insert a given index. + * + * This is used internally by insert and upsert. If there are duplicate indexes then + * the position is returned as if the value for that index were to be updated, but it + * is the callers responsibility to check whether there is a duplicate at that index + * + * @param {Number} insertIdx - The index at which the element should be inserted. + * @returns {Number} + */ +lunr.Vector.prototype.positionForIndex = function (index) { + // For an empty vector the tuple can be inserted at the beginning + if (this.elements.length == 0) { + return 0 + } + + var start = 0, + end = this.elements.length / 2, + sliceLength = end - start, + pivotPoint = Math.floor(sliceLength / 2), + pivotIndex = this.elements[pivotPoint * 2] + + while (sliceLength > 1) { + if (pivotIndex < index) { + start = pivotPoint + } + + if (pivotIndex > index) { + end = pivotPoint + } + + if (pivotIndex == index) { + break + } + + sliceLength = end - start + pivotPoint = start + Math.floor(sliceLength / 2) + pivotIndex = this.elements[pivotPoint * 2] + } + + if (pivotIndex == index) { + return pivotPoint * 2 + } + + if (pivotIndex > index) { + return pivotPoint * 2 + } + + if (pivotIndex < index) { + return (pivotPoint + 1) * 2 + } +} + +/** + * Inserts an element at an index within the vector. + * + * Does not allow duplicates, will throw an error if there is already an entry + * for this index. + * + * @param {Number} insertIdx - The index at which the element should be inserted. + * @param {Number} val - The value to be inserted into the vector. + */ +lunr.Vector.prototype.insert = function (insertIdx, val) { + this.upsert(insertIdx, val, function () { + throw "duplicate index" + }) +} + +/** + * Inserts or updates an existing index within the vector. + * + * @param {Number} insertIdx - The index at which the element should be inserted. + * @param {Number} val - The value to be inserted into the vector. + * @param {function} fn - A function that is called for updates, the existing value and the + * requested value are passed as arguments + */ +lunr.Vector.prototype.upsert = function (insertIdx, val, fn) { + this._magnitude = 0 + var position = this.positionForIndex(insertIdx) + + if (this.elements[position] == insertIdx) { + this.elements[position + 1] = fn(this.elements[position + 1], val) + } else { + this.elements.splice(position, 0, insertIdx, val) + } +} + +/** + * Calculates the magnitude of this vector. + * + * @returns {Number} + */ +lunr.Vector.prototype.magnitude = function () { + if (this._magnitude) return this._magnitude + + var sumOfSquares = 0, + elementsLength = this.elements.length + + for (var i = 1; i < elementsLength; i += 2) { + var val = this.elements[i] + sumOfSquares += val * val + } + + return this._magnitude = Math.sqrt(sumOfSquares) +} + +/** + * Calculates the dot product of this vector and another vector. + * + * @param {lunr.Vector} otherVector - The vector to compute the dot product with. + * @returns {Number} + */ +lunr.Vector.prototype.dot = function (otherVector) { + var dotProduct = 0, + a = this.elements, b = otherVector.elements, + aLen = a.length, bLen = b.length, + aVal = 0, bVal = 0, + i = 0, j = 0 + + while (i < aLen && j < bLen) { + aVal = a[i], bVal = b[j] + if (aVal < bVal) { + i += 2 + } else if (aVal > bVal) { + j += 2 + } else if (aVal == bVal) { + dotProduct += a[i + 1] * b[j + 1] + i += 2 + j += 2 + } + } + + return dotProduct +} + +/** + * Calculates the similarity between this vector and another vector. + * + * @param {lunr.Vector} otherVector - The other vector to calculate the + * similarity with. + * @returns {Number} + */ +lunr.Vector.prototype.similarity = function (otherVector) { + return this.dot(otherVector) / this.magnitude() || 0 +} + +/** + * Converts the vector to an array of the elements within the vector. + * + * @returns {Number[]} + */ +lunr.Vector.prototype.toArray = function () { + var output = new Array (this.elements.length / 2) + + for (var i = 1, j = 0; i < this.elements.length; i += 2, j++) { + output[j] = this.elements[i] + } + + return output +} + +/** + * A JSON serializable representation of the vector. + * + * @returns {Number[]} + */ +lunr.Vector.prototype.toJSON = function () { + return this.elements +} +/* eslint-disable */ +/*! + * lunr.stemmer + * Copyright (C) 2020 Oliver Nightingale + * Includes code from - http://tartarus.org/~martin/PorterStemmer/js.txt + */ + +/** + * lunr.stemmer is an english language stemmer, this is a JavaScript + * implementation of the PorterStemmer taken from http://tartarus.org/~martin + * + * @static + * @implements {lunr.PipelineFunction} + * @param {lunr.Token} token - The string to stem + * @returns {lunr.Token} + * @see {@link lunr.Pipeline} + * @function + */ +lunr.stemmer = (function(){ + var step2list = { + "ational" : "ate", + "tional" : "tion", + "enci" : "ence", + "anci" : "ance", + "izer" : "ize", + "bli" : "ble", + "alli" : "al", + "entli" : "ent", + "eli" : "e", + "ousli" : "ous", + "ization" : "ize", + "ation" : "ate", + "ator" : "ate", + "alism" : "al", + "iveness" : "ive", + "fulness" : "ful", + "ousness" : "ous", + "aliti" : "al", + "iviti" : "ive", + "biliti" : "ble", + "logi" : "log" + }, + + step3list = { + "icate" : "ic", + "ative" : "", + "alize" : "al", + "iciti" : "ic", + "ical" : "ic", + "ful" : "", + "ness" : "" + }, + + c = "[^aeiou]", // consonant + v = "[aeiouy]", // vowel + C = c + "[^aeiouy]*", // consonant sequence + V = v + "[aeiou]*", // vowel sequence + + mgr0 = "^(" + C + ")?" + V + C, // [C]VC... is m>0 + meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$", // [C]VC[V] is m=1 + mgr1 = "^(" + C + ")?" + V + C + V + C, // [C]VCVC... is m>1 + s_v = "^(" + C + ")?" + v; // vowel in stem + + var re_mgr0 = new RegExp(mgr0); + var re_mgr1 = new RegExp(mgr1); + var re_meq1 = new RegExp(meq1); + var re_s_v = new RegExp(s_v); + + var re_1a = /^(.+?)(ss|i)es$/; + var re2_1a = /^(.+?)([^s])s$/; + var re_1b = /^(.+?)eed$/; + var re2_1b = /^(.+?)(ed|ing)$/; + var re_1b_2 = /.$/; + var re2_1b_2 = /(at|bl|iz)$/; + var re3_1b_2 = new RegExp("([^aeiouylsz])\\1$"); + var re4_1b_2 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + + var re_1c = /^(.+?[^aeiou])y$/; + var re_2 = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + + var re_3 = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + + var re_4 = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + var re2_4 = /^(.+?)(s|t)(ion)$/; + + var re_5 = /^(.+?)e$/; + var re_5_1 = /ll$/; + var re3_5 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + + var porterStemmer = function porterStemmer(w) { + var stem, + suffix, + firstch, + re, + re2, + re3, + re4; + + if (w.length < 3) { return w; } + + firstch = w.substr(0,1); + if (firstch == "y") { + w = firstch.toUpperCase() + w.substr(1); + } + + // Step 1a + re = re_1a + re2 = re2_1a; + + if (re.test(w)) { w = w.replace(re,"$1$2"); } + else if (re2.test(w)) { w = w.replace(re2,"$1$2"); } + + // Step 1b + re = re_1b; + re2 = re2_1b; + if (re.test(w)) { + var fp = re.exec(w); + re = re_mgr0; + if (re.test(fp[1])) { + re = re_1b_2; + w = w.replace(re,""); + } + } else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = re_s_v; + if (re2.test(stem)) { + w = stem; + re2 = re2_1b_2; + re3 = re3_1b_2; + re4 = re4_1b_2; + if (re2.test(w)) { w = w + "e"; } + else if (re3.test(w)) { re = re_1b_2; w = w.replace(re,""); } + else if (re4.test(w)) { w = w + "e"; } + } + } + + // Step 1c - replace suffix y or Y by i if preceded by a non-vowel which is not the first letter of the word (so cry -> cri, by -> by, say -> say) + re = re_1c; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + w = stem + "i"; + } + + // Step 2 + re = re_2; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = re_mgr0; + if (re.test(stem)) { + w = stem + step2list[suffix]; + } + } + + // Step 3 + re = re_3; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = re_mgr0; + if (re.test(stem)) { + w = stem + step3list[suffix]; + } + } + + // Step 4 + re = re_4; + re2 = re2_4; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = re_mgr1; + if (re.test(stem)) { + w = stem; + } + } else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = re_mgr1; + if (re2.test(stem)) { + w = stem; + } + } + + // Step 5 + re = re_5; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = re_mgr1; + re2 = re_meq1; + re3 = re3_5; + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) { + w = stem; + } + } + + re = re_5_1; + re2 = re_mgr1; + if (re.test(w) && re2.test(w)) { + re = re_1b_2; + w = w.replace(re,""); + } + + // and turn initial Y back to y + + if (firstch == "y") { + w = firstch.toLowerCase() + w.substr(1); + } + + return w; + }; + + return function (token) { + return token.update(porterStemmer); + } +})(); + +lunr.Pipeline.registerFunction(lunr.stemmer, 'stemmer') +/*! + * lunr.stopWordFilter + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * lunr.generateStopWordFilter builds a stopWordFilter function from the provided + * list of stop words. + * + * The built in lunr.stopWordFilter is built using this generator and can be used + * to generate custom stopWordFilters for applications or non English languages. + * + * @function + * @param {Array} token The token to pass through the filter + * @returns {lunr.PipelineFunction} + * @see lunr.Pipeline + * @see lunr.stopWordFilter + */ +lunr.generateStopWordFilter = function (stopWords) { + var words = stopWords.reduce(function (memo, stopWord) { + memo[stopWord] = stopWord + return memo + }, {}) + + return function (token) { + if (token && words[token.toString()] !== token.toString()) return token + } +} + +/** + * lunr.stopWordFilter is an English language stop word list filter, any words + * contained in the list will not be passed through the filter. + * + * This is intended to be used in the Pipeline. If the token does not pass the + * filter then undefined will be returned. + * + * @function + * @implements {lunr.PipelineFunction} + * @params {lunr.Token} token - A token to check for being a stop word. + * @returns {lunr.Token} + * @see {@link lunr.Pipeline} + */ +lunr.stopWordFilter = lunr.generateStopWordFilter([ + 'a', + 'able', + 'about', + 'across', + 'after', + 'all', + 'almost', + 'also', + 'am', + 'among', + 'an', + 'and', + 'any', + 'are', + 'as', + 'at', + 'be', + 'because', + 'been', + 'but', + 'by', + 'can', + 'cannot', + 'could', + 'dear', + 'did', + 'do', + 'does', + 'either', + 'else', + 'ever', + 'every', + 'for', + 'from', + 'get', + 'got', + 'had', + 'has', + 'have', + 'he', + 'her', + 'hers', + 'him', + 'his', + 'how', + 'however', + 'i', + 'if', + 'in', + 'into', + 'is', + 'it', + 'its', + 'just', + 'least', + 'let', + 'like', + 'likely', + 'may', + 'me', + 'might', + 'most', + 'must', + 'my', + 'neither', + 'no', + 'nor', + 'not', + 'of', + 'off', + 'often', + 'on', + 'only', + 'or', + 'other', + 'our', + 'own', + 'rather', + 'said', + 'say', + 'says', + 'she', + 'should', + 'since', + 'so', + 'some', + 'than', + 'that', + 'the', + 'their', + 'them', + 'then', + 'there', + 'these', + 'they', + 'this', + 'tis', + 'to', + 'too', + 'twas', + 'us', + 'wants', + 'was', + 'we', + 'were', + 'what', + 'when', + 'where', + 'which', + 'while', + 'who', + 'whom', + 'why', + 'will', + 'with', + 'would', + 'yet', + 'you', + 'your' +]) + +lunr.Pipeline.registerFunction(lunr.stopWordFilter, 'stopWordFilter') +/*! + * lunr.trimmer + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * lunr.trimmer is a pipeline function for trimming non word + * characters from the beginning and end of tokens before they + * enter the index. + * + * This implementation may not work correctly for non latin + * characters and should either be removed or adapted for use + * with languages with non-latin characters. + * + * @static + * @implements {lunr.PipelineFunction} + * @param {lunr.Token} token The token to pass through the filter + * @returns {lunr.Token} + * @see lunr.Pipeline + */ +lunr.trimmer = function (token) { + return token.update(function (s) { + return s.replace(/^\W+/, '').replace(/\W+$/, '') + }) +} + +lunr.Pipeline.registerFunction(lunr.trimmer, 'trimmer') +/*! + * lunr.TokenSet + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * A token set is used to store the unique list of all tokens + * within an index. Token sets are also used to represent an + * incoming query to the index, this query token set and index + * token set are then intersected to find which tokens to look + * up in the inverted index. + * + * A token set can hold multiple tokens, as in the case of the + * index token set, or it can hold a single token as in the + * case of a simple query token set. + * + * Additionally token sets are used to perform wildcard matching. + * Leading, contained and trailing wildcards are supported, and + * from this edit distance matching can also be provided. + * + * Token sets are implemented as a minimal finite state automata, + * where both common prefixes and suffixes are shared between tokens. + * This helps to reduce the space used for storing the token set. + * + * @constructor + */ +lunr.TokenSet = function () { + this.final = false + this.edges = {} + this.id = lunr.TokenSet._nextId + lunr.TokenSet._nextId += 1 +} + +/** + * Keeps track of the next, auto increment, identifier to assign + * to a new tokenSet. + * + * TokenSets require a unique identifier to be correctly minimised. + * + * @private + */ +lunr.TokenSet._nextId = 1 + +/** + * Creates a TokenSet instance from the given sorted array of words. + * + * @param {String[]} arr - A sorted array of strings to create the set from. + * @returns {lunr.TokenSet} + * @throws Will throw an error if the input array is not sorted. + */ +lunr.TokenSet.fromArray = function (arr) { + var builder = new lunr.TokenSet.Builder + + for (var i = 0, len = arr.length; i < len; i++) { + builder.insert(arr[i]) + } + + builder.finish() + return builder.root +} + +/** + * Creates a token set from a query clause. + * + * @private + * @param {Object} clause - A single clause from lunr.Query. + * @param {string} clause.term - The query clause term. + * @param {number} [clause.editDistance] - The optional edit distance for the term. + * @returns {lunr.TokenSet} + */ +lunr.TokenSet.fromClause = function (clause) { + if ('editDistance' in clause) { + return lunr.TokenSet.fromFuzzyString(clause.term, clause.editDistance) + } else { + return lunr.TokenSet.fromString(clause.term) + } +} + +/** + * Creates a token set representing a single string with a specified + * edit distance. + * + * Insertions, deletions, substitutions and transpositions are each + * treated as an edit distance of 1. + * + * Increasing the allowed edit distance will have a dramatic impact + * on the performance of both creating and intersecting these TokenSets. + * It is advised to keep the edit distance less than 3. + * + * @param {string} str - The string to create the token set from. + * @param {number} editDistance - The allowed edit distance to match. + * @returns {lunr.Vector} + */ +lunr.TokenSet.fromFuzzyString = function (str, editDistance) { + var root = new lunr.TokenSet + + var stack = [{ + node: root, + editsRemaining: editDistance, + str: str + }] + + while (stack.length) { + var frame = stack.pop() + + // no edit + if (frame.str.length > 0) { + var char = frame.str.charAt(0), + noEditNode + + if (char in frame.node.edges) { + noEditNode = frame.node.edges[char] + } else { + noEditNode = new lunr.TokenSet + frame.node.edges[char] = noEditNode + } + + if (frame.str.length == 1) { + noEditNode.final = true + } + + stack.push({ + node: noEditNode, + editsRemaining: frame.editsRemaining, + str: frame.str.slice(1) + }) + } + + if (frame.editsRemaining == 0) { + continue + } + + // insertion + if ("*" in frame.node.edges) { + var insertionNode = frame.node.edges["*"] + } else { + var insertionNode = new lunr.TokenSet + frame.node.edges["*"] = insertionNode + } + + if (frame.str.length == 0) { + insertionNode.final = true + } + + stack.push({ + node: insertionNode, + editsRemaining: frame.editsRemaining - 1, + str: frame.str + }) + + // deletion + // can only do a deletion if we have enough edits remaining + // and if there are characters left to delete in the string + if (frame.str.length > 1) { + stack.push({ + node: frame.node, + editsRemaining: frame.editsRemaining - 1, + str: frame.str.slice(1) + }) + } + + // deletion + // just removing the last character from the str + if (frame.str.length == 1) { + frame.node.final = true + } + + // substitution + // can only do a substitution if we have enough edits remaining + // and if there are characters left to substitute + if (frame.str.length >= 1) { + if ("*" in frame.node.edges) { + var substitutionNode = frame.node.edges["*"] + } else { + var substitutionNode = new lunr.TokenSet + frame.node.edges["*"] = substitutionNode + } + + if (frame.str.length == 1) { + substitutionNode.final = true + } + + stack.push({ + node: substitutionNode, + editsRemaining: frame.editsRemaining - 1, + str: frame.str.slice(1) + }) + } + + // transposition + // can only do a transposition if there are edits remaining + // and there are enough characters to transpose + if (frame.str.length > 1) { + var charA = frame.str.charAt(0), + charB = frame.str.charAt(1), + transposeNode + + if (charB in frame.node.edges) { + transposeNode = frame.node.edges[charB] + } else { + transposeNode = new lunr.TokenSet + frame.node.edges[charB] = transposeNode + } + + if (frame.str.length == 1) { + transposeNode.final = true + } + + stack.push({ + node: transposeNode, + editsRemaining: frame.editsRemaining - 1, + str: charA + frame.str.slice(2) + }) + } + } + + return root +} + +/** + * Creates a TokenSet from a string. + * + * The string may contain one or more wildcard characters (*) + * that will allow wildcard matching when intersecting with + * another TokenSet. + * + * @param {string} str - The string to create a TokenSet from. + * @returns {lunr.TokenSet} + */ +lunr.TokenSet.fromString = function (str) { + var node = new lunr.TokenSet, + root = node + + /* + * Iterates through all characters within the passed string + * appending a node for each character. + * + * When a wildcard character is found then a self + * referencing edge is introduced to continually match + * any number of any characters. + */ + for (var i = 0, len = str.length; i < len; i++) { + var char = str[i], + final = (i == len - 1) + + if (char == "*") { + node.edges[char] = node + node.final = final + + } else { + var next = new lunr.TokenSet + next.final = final + + node.edges[char] = next + node = next + } + } + + return root +} + +/** + * Converts this TokenSet into an array of strings + * contained within the TokenSet. + * + * This is not intended to be used on a TokenSet that + * contains wildcards, in these cases the results are + * undefined and are likely to cause an infinite loop. + * + * @returns {string[]} + */ +lunr.TokenSet.prototype.toArray = function () { + var words = [] + + var stack = [{ + prefix: "", + node: this + }] + + while (stack.length) { + var frame = stack.pop(), + edges = Object.keys(frame.node.edges), + len = edges.length + + if (frame.node.final) { + /* In Safari, at this point the prefix is sometimes corrupted, see: + * https://github.com/olivernn/lunr.js/issues/279 Calling any + * String.prototype method forces Safari to "cast" this string to what + * it's supposed to be, fixing the bug. */ + frame.prefix.charAt(0) + words.push(frame.prefix) + } + + for (var i = 0; i < len; i++) { + var edge = edges[i] + + stack.push({ + prefix: frame.prefix.concat(edge), + node: frame.node.edges[edge] + }) + } + } + + return words +} + +/** + * Generates a string representation of a TokenSet. + * + * This is intended to allow TokenSets to be used as keys + * in objects, largely to aid the construction and minimisation + * of a TokenSet. As such it is not designed to be a human + * friendly representation of the TokenSet. + * + * @returns {string} + */ +lunr.TokenSet.prototype.toString = function () { + // NOTE: Using Object.keys here as this.edges is very likely + // to enter 'hash-mode' with many keys being added + // + // avoiding a for-in loop here as it leads to the function + // being de-optimised (at least in V8). From some simple + // benchmarks the performance is comparable, but allowing + // V8 to optimize may mean easy performance wins in the future. + + if (this._str) { + return this._str + } + + var str = this.final ? '1' : '0', + labels = Object.keys(this.edges).sort(), + len = labels.length + + for (var i = 0; i < len; i++) { + var label = labels[i], + node = this.edges[label] + + str = str + label + node.id + } + + return str +} + +/** + * Returns a new TokenSet that is the intersection of + * this TokenSet and the passed TokenSet. + * + * This intersection will take into account any wildcards + * contained within the TokenSet. + * + * @param {lunr.TokenSet} b - An other TokenSet to intersect with. + * @returns {lunr.TokenSet} + */ +lunr.TokenSet.prototype.intersect = function (b) { + var output = new lunr.TokenSet, + frame = undefined + + var stack = [{ + qNode: b, + output: output, + node: this + }] + + while (stack.length) { + frame = stack.pop() + + // NOTE: As with the #toString method, we are using + // Object.keys and a for loop instead of a for-in loop + // as both of these objects enter 'hash' mode, causing + // the function to be de-optimised in V8 + var qEdges = Object.keys(frame.qNode.edges), + qLen = qEdges.length, + nEdges = Object.keys(frame.node.edges), + nLen = nEdges.length + + for (var q = 0; q < qLen; q++) { + var qEdge = qEdges[q] + + for (var n = 0; n < nLen; n++) { + var nEdge = nEdges[n] + + if (nEdge == qEdge || qEdge == '*') { + var node = frame.node.edges[nEdge], + qNode = frame.qNode.edges[qEdge], + final = node.final && qNode.final, + next = undefined + + if (nEdge in frame.output.edges) { + // an edge already exists for this character + // no need to create a new node, just set the finality + // bit unless this node is already final + next = frame.output.edges[nEdge] + next.final = next.final || final + + } else { + // no edge exists yet, must create one + // set the finality bit and insert it + // into the output + next = new lunr.TokenSet + next.final = final + frame.output.edges[nEdge] = next + } + + stack.push({ + qNode: qNode, + output: next, + node: node + }) + } + } + } + } + + return output +} +lunr.TokenSet.Builder = function () { + this.previousWord = "" + this.root = new lunr.TokenSet + this.uncheckedNodes = [] + this.minimizedNodes = {} +} + +lunr.TokenSet.Builder.prototype.insert = function (word) { + var node, + commonPrefix = 0 + + if (word < this.previousWord) { + throw new Error ("Out of order word insertion") + } + + for (var i = 0; i < word.length && i < this.previousWord.length; i++) { + if (word[i] != this.previousWord[i]) break + commonPrefix++ + } + + this.minimize(commonPrefix) + + if (this.uncheckedNodes.length == 0) { + node = this.root + } else { + node = this.uncheckedNodes[this.uncheckedNodes.length - 1].child + } + + for (var i = commonPrefix; i < word.length; i++) { + var nextNode = new lunr.TokenSet, + char = word[i] + + node.edges[char] = nextNode + + this.uncheckedNodes.push({ + parent: node, + char: char, + child: nextNode + }) + + node = nextNode + } + + node.final = true + this.previousWord = word +} + +lunr.TokenSet.Builder.prototype.finish = function () { + this.minimize(0) +} + +lunr.TokenSet.Builder.prototype.minimize = function (downTo) { + for (var i = this.uncheckedNodes.length - 1; i >= downTo; i--) { + var node = this.uncheckedNodes[i], + childKey = node.child.toString() + + if (childKey in this.minimizedNodes) { + node.parent.edges[node.char] = this.minimizedNodes[childKey] + } else { + // Cache the key for this node since + // we know it can't change anymore + node.child._str = childKey + + this.minimizedNodes[childKey] = node.child + } + + this.uncheckedNodes.pop() + } +} +/*! + * lunr.Index + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * An index contains the built index of all documents and provides a query interface + * to the index. + * + * Usually instances of lunr.Index will not be created using this constructor, instead + * lunr.Builder should be used to construct new indexes, or lunr.Index.load should be + * used to load previously built and serialized indexes. + * + * @constructor + * @param {Object} attrs - The attributes of the built search index. + * @param {Object} attrs.invertedIndex - An index of term/field to document reference. + * @param {Object} attrs.fieldVectors - Field vectors + * @param {lunr.TokenSet} attrs.tokenSet - An set of all corpus tokens. + * @param {string[]} attrs.fields - The names of indexed document fields. + * @param {lunr.Pipeline} attrs.pipeline - The pipeline to use for search terms. + */ +lunr.Index = function (attrs) { + this.invertedIndex = attrs.invertedIndex + this.fieldVectors = attrs.fieldVectors + this.tokenSet = attrs.tokenSet + this.fields = attrs.fields + this.pipeline = attrs.pipeline +} + +/** + * A result contains details of a document matching a search query. + * @typedef {Object} lunr.Index~Result + * @property {string} ref - The reference of the document this result represents. + * @property {number} score - A number between 0 and 1 representing how similar this document is to the query. + * @property {lunr.MatchData} matchData - Contains metadata about this match including which term(s) caused the match. + */ + +/** + * Although lunr provides the ability to create queries using lunr.Query, it also provides a simple + * query language which itself is parsed into an instance of lunr.Query. + * + * For programmatically building queries it is advised to directly use lunr.Query, the query language + * is best used for human entered text rather than program generated text. + * + * At its simplest queries can just be a single term, e.g. `hello`, multiple terms are also supported + * and will be combined with OR, e.g `hello world` will match documents that contain either 'hello' + * or 'world', though those that contain both will rank higher in the results. + * + * Wildcards can be included in terms to match one or more unspecified characters, these wildcards can + * be inserted anywhere within the term, and more than one wildcard can exist in a single term. Adding + * wildcards will increase the number of documents that will be found but can also have a negative + * impact on query performance, especially with wildcards at the beginning of a term. + * + * Terms can be restricted to specific fields, e.g. `title:hello`, only documents with the term + * hello in the title field will match this query. Using a field not present in the index will lead + * to an error being thrown. + * + * Modifiers can also be added to terms, lunr supports edit distance and boost modifiers on terms. A term + * boost will make documents matching that term score higher, e.g. `foo^5`. Edit distance is also supported + * to provide fuzzy matching, e.g. 'hello~2' will match documents with hello with an edit distance of 2. + * Avoid large values for edit distance to improve query performance. + * + * Each term also supports a presence modifier. By default a term's presence in document is optional, however + * this can be changed to either required or prohibited. For a term's presence to be required in a document the + * term should be prefixed with a '+', e.g. `+foo bar` is a search for documents that must contain 'foo' and + * optionally contain 'bar'. Conversely a leading '-' sets the terms presence to prohibited, i.e. it must not + * appear in a document, e.g. `-foo bar` is a search for documents that do not contain 'foo' but may contain 'bar'. + * + * To escape special characters the backslash character '\' can be used, this allows searches to include + * characters that would normally be considered modifiers, e.g. `foo\~2` will search for a term "foo~2" instead + * of attempting to apply a boost of 2 to the search term "foo". + * + * @typedef {string} lunr.Index~QueryString + * @example Simple single term query + * hello + * @example Multiple term query + * hello world + * @example term scoped to a field + * title:hello + * @example term with a boost of 10 + * hello^10 + * @example term with an edit distance of 2 + * hello~2 + * @example terms with presence modifiers + * -foo +bar baz + */ + +/** + * Performs a search against the index using lunr query syntax. + * + * Results will be returned sorted by their score, the most relevant results + * will be returned first. For details on how the score is calculated, please see + * the {@link https://lunrjs.com/guides/searching.html#scoring|guide}. + * + * For more programmatic querying use lunr.Index#query. + * + * @param {lunr.Index~QueryString} queryString - A string containing a lunr query. + * @throws {lunr.QueryParseError} If the passed query string cannot be parsed. + * @returns {lunr.Index~Result[]} + */ +lunr.Index.prototype.search = function (queryString) { + return this.query(function (query) { + var parser = new lunr.QueryParser(queryString, query) + parser.parse() + }) +} + +/** + * A query builder callback provides a query object to be used to express + * the query to perform on the index. + * + * @callback lunr.Index~queryBuilder + * @param {lunr.Query} query - The query object to build up. + * @this lunr.Query + */ + +/** + * Performs a query against the index using the yielded lunr.Query object. + * + * If performing programmatic queries against the index, this method is preferred + * over lunr.Index#search so as to avoid the additional query parsing overhead. + * + * A query object is yielded to the supplied function which should be used to + * express the query to be run against the index. + * + * Note that although this function takes a callback parameter it is _not_ an + * asynchronous operation, the callback is just yielded a query object to be + * customized. + * + * @param {lunr.Index~queryBuilder} fn - A function that is used to build the query. + * @returns {lunr.Index~Result[]} + */ +lunr.Index.prototype.query = function (fn) { + // for each query clause + // * process terms + // * expand terms from token set + // * find matching documents and metadata + // * get document vectors + // * score documents + + var query = new lunr.Query(this.fields), + matchingFields = Object.create(null), + queryVectors = Object.create(null), + termFieldCache = Object.create(null), + requiredMatches = Object.create(null), + prohibitedMatches = Object.create(null) + + /* + * To support field level boosts a query vector is created per + * field. An empty vector is eagerly created to support negated + * queries. + */ + for (var i = 0; i < this.fields.length; i++) { + queryVectors[this.fields[i]] = new lunr.Vector + } + + fn.call(query, query) + + for (var i = 0; i < query.clauses.length; i++) { + /* + * Unless the pipeline has been disabled for this term, which is + * the case for terms with wildcards, we need to pass the clause + * term through the search pipeline. A pipeline returns an array + * of processed terms. Pipeline functions may expand the passed + * term, which means we may end up performing multiple index lookups + * for a single query term. + */ + var clause = query.clauses[i], + terms = null, + clauseMatches = lunr.Set.empty + + if (clause.usePipeline) { + terms = this.pipeline.runString(clause.term, { + fields: clause.fields + }) + } else { + terms = [clause.term] + } + + for (var m = 0; m < terms.length; m++) { + var term = terms[m] + + /* + * Each term returned from the pipeline needs to use the same query + * clause object, e.g. the same boost and or edit distance. The + * simplest way to do this is to re-use the clause object but mutate + * its term property. + */ + clause.term = term + + /* + * From the term in the clause we create a token set which will then + * be used to intersect the indexes token set to get a list of terms + * to lookup in the inverted index + */ + var termTokenSet = lunr.TokenSet.fromClause(clause), + expandedTerms = this.tokenSet.intersect(termTokenSet).toArray() + + /* + * If a term marked as required does not exist in the tokenSet it is + * impossible for the search to return any matches. We set all the field + * scoped required matches set to empty and stop examining any further + * clauses. + */ + if (expandedTerms.length === 0 && clause.presence === lunr.Query.presence.REQUIRED) { + for (var k = 0; k < clause.fields.length; k++) { + var field = clause.fields[k] + requiredMatches[field] = lunr.Set.empty + } + + break + } + + for (var j = 0; j < expandedTerms.length; j++) { + /* + * For each term get the posting and termIndex, this is required for + * building the query vector. + */ + var expandedTerm = expandedTerms[j], + posting = this.invertedIndex[expandedTerm], + termIndex = posting._index + + for (var k = 0; k < clause.fields.length; k++) { + /* + * For each field that this query term is scoped by (by default + * all fields are in scope) we need to get all the document refs + * that have this term in that field. + * + * The posting is the entry in the invertedIndex for the matching + * term from above. + */ + var field = clause.fields[k], + fieldPosting = posting[field], + matchingDocumentRefs = Object.keys(fieldPosting), + termField = expandedTerm + "/" + field, + matchingDocumentsSet = new lunr.Set(matchingDocumentRefs) + + /* + * if the presence of this term is required ensure that the matching + * documents are added to the set of required matches for this clause. + * + */ + if (clause.presence == lunr.Query.presence.REQUIRED) { + clauseMatches = clauseMatches.union(matchingDocumentsSet) + + if (requiredMatches[field] === undefined) { + requiredMatches[field] = lunr.Set.complete + } + } + + /* + * if the presence of this term is prohibited ensure that the matching + * documents are added to the set of prohibited matches for this field, + * creating that set if it does not yet exist. + */ + if (clause.presence == lunr.Query.presence.PROHIBITED) { + if (prohibitedMatches[field] === undefined) { + prohibitedMatches[field] = lunr.Set.empty + } + + prohibitedMatches[field] = prohibitedMatches[field].union(matchingDocumentsSet) + + /* + * Prohibited matches should not be part of the query vector used for + * similarity scoring and no metadata should be extracted so we continue + * to the next field + */ + continue + } + + /* + * The query field vector is populated using the termIndex found for + * the term and a unit value with the appropriate boost applied. + * Using upsert because there could already be an entry in the vector + * for the term we are working with. In that case we just add the scores + * together. + */ + queryVectors[field].upsert(termIndex, clause.boost, function (a, b) { return a + b }) + + /** + * If we've already seen this term, field combo then we've already collected + * the matching documents and metadata, no need to go through all that again + */ + if (termFieldCache[termField]) { + continue + } + + for (var l = 0; l < matchingDocumentRefs.length; l++) { + /* + * All metadata for this term/field/document triple + * are then extracted and collected into an instance + * of lunr.MatchData ready to be returned in the query + * results + */ + var matchingDocumentRef = matchingDocumentRefs[l], + matchingFieldRef = new lunr.FieldRef (matchingDocumentRef, field), + metadata = fieldPosting[matchingDocumentRef], + fieldMatch + + if ((fieldMatch = matchingFields[matchingFieldRef]) === undefined) { + matchingFields[matchingFieldRef] = new lunr.MatchData (expandedTerm, field, metadata) + } else { + fieldMatch.add(expandedTerm, field, metadata) + } + + } + + termFieldCache[termField] = true + } + } + } + + /** + * If the presence was required we need to update the requiredMatches field sets. + * We do this after all fields for the term have collected their matches because + * the clause terms presence is required in _any_ of the fields not _all_ of the + * fields. + */ + if (clause.presence === lunr.Query.presence.REQUIRED) { + for (var k = 0; k < clause.fields.length; k++) { + var field = clause.fields[k] + requiredMatches[field] = requiredMatches[field].intersect(clauseMatches) + } + } + } + + /** + * Need to combine the field scoped required and prohibited + * matching documents into a global set of required and prohibited + * matches + */ + var allRequiredMatches = lunr.Set.complete, + allProhibitedMatches = lunr.Set.empty + + for (var i = 0; i < this.fields.length; i++) { + var field = this.fields[i] + + if (requiredMatches[field]) { + allRequiredMatches = allRequiredMatches.intersect(requiredMatches[field]) + } + + if (prohibitedMatches[field]) { + allProhibitedMatches = allProhibitedMatches.union(prohibitedMatches[field]) + } + } + + var matchingFieldRefs = Object.keys(matchingFields), + results = [], + matches = Object.create(null) + + /* + * If the query is negated (contains only prohibited terms) + * we need to get _all_ fieldRefs currently existing in the + * index. This is only done when we know that the query is + * entirely prohibited terms to avoid any cost of getting all + * fieldRefs unnecessarily. + * + * Additionally, blank MatchData must be created to correctly + * populate the results. + */ + if (query.isNegated()) { + matchingFieldRefs = Object.keys(this.fieldVectors) + + for (var i = 0; i < matchingFieldRefs.length; i++) { + var matchingFieldRef = matchingFieldRefs[i] + var fieldRef = lunr.FieldRef.fromString(matchingFieldRef) + matchingFields[matchingFieldRef] = new lunr.MatchData + } + } + + for (var i = 0; i < matchingFieldRefs.length; i++) { + /* + * Currently we have document fields that match the query, but we + * need to return documents. The matchData and scores are combined + * from multiple fields belonging to the same document. + * + * Scores are calculated by field, using the query vectors created + * above, and combined into a final document score using addition. + */ + var fieldRef = lunr.FieldRef.fromString(matchingFieldRefs[i]), + docRef = fieldRef.docRef + + if (!allRequiredMatches.contains(docRef)) { + continue + } + + if (allProhibitedMatches.contains(docRef)) { + continue + } + + var fieldVector = this.fieldVectors[fieldRef], + score = queryVectors[fieldRef.fieldName].similarity(fieldVector), + docMatch + + if ((docMatch = matches[docRef]) !== undefined) { + docMatch.score += score + docMatch.matchData.combine(matchingFields[fieldRef]) + } else { + var match = { + ref: docRef, + score: score, + matchData: matchingFields[fieldRef] + } + matches[docRef] = match + results.push(match) + } + } + + /* + * Sort the results objects by score, highest first. + */ + return results.sort(function (a, b) { + return b.score - a.score + }) +} + +/** + * Prepares the index for JSON serialization. + * + * The schema for this JSON blob will be described in a + * separate JSON schema file. + * + * @returns {Object} + */ +lunr.Index.prototype.toJSON = function () { + var invertedIndex = Object.keys(this.invertedIndex) + .sort() + .map(function (term) { + return [term, this.invertedIndex[term]] + }, this) + + var fieldVectors = Object.keys(this.fieldVectors) + .map(function (ref) { + return [ref, this.fieldVectors[ref].toJSON()] + }, this) + + return { + version: lunr.version, + fields: this.fields, + fieldVectors: fieldVectors, + invertedIndex: invertedIndex, + pipeline: this.pipeline.toJSON() + } +} + +/** + * Loads a previously serialized lunr.Index + * + * @param {Object} serializedIndex - A previously serialized lunr.Index + * @returns {lunr.Index} + */ +lunr.Index.load = function (serializedIndex) { + var attrs = {}, + fieldVectors = {}, + serializedVectors = serializedIndex.fieldVectors, + invertedIndex = Object.create(null), + serializedInvertedIndex = serializedIndex.invertedIndex, + tokenSetBuilder = new lunr.TokenSet.Builder, + pipeline = lunr.Pipeline.load(serializedIndex.pipeline) + + if (serializedIndex.version != lunr.version) { + lunr.utils.warn("Version mismatch when loading serialised index. Current version of lunr '" + lunr.version + "' does not match serialized index '" + serializedIndex.version + "'") + } + + for (var i = 0; i < serializedVectors.length; i++) { + var tuple = serializedVectors[i], + ref = tuple[0], + elements = tuple[1] + + fieldVectors[ref] = new lunr.Vector(elements) + } + + for (var i = 0; i < serializedInvertedIndex.length; i++) { + var tuple = serializedInvertedIndex[i], + term = tuple[0], + posting = tuple[1] + + tokenSetBuilder.insert(term) + invertedIndex[term] = posting + } + + tokenSetBuilder.finish() + + attrs.fields = serializedIndex.fields + + attrs.fieldVectors = fieldVectors + attrs.invertedIndex = invertedIndex + attrs.tokenSet = tokenSetBuilder.root + attrs.pipeline = pipeline + + return new lunr.Index(attrs) +} +/*! + * lunr.Builder + * Copyright (C) 2020 Oliver Nightingale + */ + +/** + * lunr.Builder performs indexing on a set of documents and + * returns instances of lunr.Index ready for querying. + * + * All configuration of the index is done via the builder, the + * fields to index, the document reference, the text processing + * pipeline and document scoring parameters are all set on the + * builder before indexing. + * + * @constructor + * @property {string} _ref - Internal reference to the document reference field. + * @property {string[]} _fields - Internal reference to the document fields to index. + * @property {object} invertedIndex - The inverted index maps terms to document fields. + * @property {object} documentTermFrequencies - Keeps track of document term frequencies. + * @property {object} documentLengths - Keeps track of the length of documents added to the index. + * @property {lunr.tokenizer} tokenizer - Function for splitting strings into tokens for indexing. + * @property {lunr.Pipeline} pipeline - The pipeline performs text processing on tokens before indexing. + * @property {lunr.Pipeline} searchPipeline - A pipeline for processing search terms before querying the index. + * @property {number} documentCount - Keeps track of the total number of documents indexed. + * @property {number} _b - A parameter to control field length normalization, setting this to 0 disabled normalization, 1 fully normalizes field lengths, the default value is 0.75. + * @property {number} _k1 - A parameter to control how quickly an increase in term frequency results in term frequency saturation, the default value is 1.2. + * @property {number} termIndex - A counter incremented for each unique term, used to identify a terms position in the vector space. + * @property {array} metadataWhitelist - A list of metadata keys that have been whitelisted for entry in the index. + */ +lunr.Builder = function () { + this._ref = "id" + this._fields = Object.create(null) + this._documents = Object.create(null) + this.invertedIndex = Object.create(null) + this.fieldTermFrequencies = {} + this.fieldLengths = {} + this.tokenizer = lunr.tokenizer + this.pipeline = new lunr.Pipeline + this.searchPipeline = new lunr.Pipeline + this.documentCount = 0 + this._b = 0.75 + this._k1 = 1.2 + this.termIndex = 0 + this.metadataWhitelist = [] +} + +/** + * Sets the document field used as the document reference. Every document must have this field. + * The type of this field in the document should be a string, if it is not a string it will be + * coerced into a string by calling toString. + * + * The default ref is 'id'. + * + * The ref should _not_ be changed during indexing, it should be set before any documents are + * added to the index. Changing it during indexing can lead to inconsistent results. + * + * @param {string} ref - The name of the reference field in the document. + */ +lunr.Builder.prototype.ref = function (ref) { + this._ref = ref +} + +/** + * A function that is used to extract a field from a document. + * + * Lunr expects a field to be at the top level of a document, if however the field + * is deeply nested within a document an extractor function can be used to extract + * the right field for indexing. + * + * @callback fieldExtractor + * @param {object} doc - The document being added to the index. + * @returns {?(string|object|object[])} obj - The object that will be indexed for this field. + * @example Extracting a nested field + * function (doc) { return doc.nested.field } + */ + +/** + * Adds a field to the list of document fields that will be indexed. Every document being + * indexed should have this field. Null values for this field in indexed documents will + * not cause errors but will limit the chance of that document being retrieved by searches. + * + * All fields should be added before adding documents to the index. Adding fields after + * a document has been indexed will have no effect on already indexed documents. + * + * Fields can be boosted at build time. This allows terms within that field to have more + * importance when ranking search results. Use a field boost to specify that matches within + * one field are more important than other fields. + * + * @param {string} fieldName - The name of a field to index in all documents. + * @param {object} attributes - Optional attributes associated with this field. + * @param {number} [attributes.boost=1] - Boost applied to all terms within this field. + * @param {fieldExtractor} [attributes.extractor] - Function to extract a field from a document. + * @throws {RangeError} fieldName cannot contain unsupported characters '/' + */ +lunr.Builder.prototype.field = function (fieldName, attributes) { + if (/\//.test(fieldName)) { + throw new RangeError ("Field '" + fieldName + "' contains illegal character '/'") + } + + this._fields[fieldName] = attributes || {} +} + +/** + * A parameter to tune the amount of field length normalisation that is applied when + * calculating relevance scores. A value of 0 will completely disable any normalisation + * and a value of 1 will fully normalise field lengths. The default is 0.75. Values of b + * will be clamped to the range 0 - 1. + * + * @param {number} number - The value to set for this tuning parameter. + */ +lunr.Builder.prototype.b = function (number) { + if (number < 0) { + this._b = 0 + } else if (number > 1) { + this._b = 1 + } else { + this._b = number + } +} + +/** + * A parameter that controls the speed at which a rise in term frequency results in term + * frequency saturation. The default value is 1.2. Setting this to a higher value will give + * slower saturation levels, a lower value will result in quicker saturation. + * + * @param {number} number - The value to set for this tuning parameter. + */ +lunr.Builder.prototype.k1 = function (number) { + this._k1 = number +} + +/** + * Adds a document to the index. + * + * Before adding fields to the index the index should have been fully setup, with the document + * ref and all fields to index already having been specified. + * + * The document must have a field name as specified by the ref (by default this is 'id') and + * it should have all fields defined for indexing, though null or undefined values will not + * cause errors. + * + * Entire documents can be boosted at build time. Applying a boost to a document indicates that + * this document should rank higher in search results than other documents. + * + * @param {object} doc - The document to add to the index. + * @param {object} attributes - Optional attributes associated with this document. + * @param {number} [attributes.boost=1] - Boost applied to all terms within this document. + */ +lunr.Builder.prototype.add = function (doc, attributes) { + var docRef = doc[this._ref], + fields = Object.keys(this._fields) + + this._documents[docRef] = attributes || {} + this.documentCount += 1 + + for (var i = 0; i < fields.length; i++) { + var fieldName = fields[i], + extractor = this._fields[fieldName].extractor, + field = extractor ? extractor(doc) : doc[fieldName], + tokens = this.tokenizer(field, { + fields: [fieldName] + }), + terms = this.pipeline.run(tokens), + fieldRef = new lunr.FieldRef (docRef, fieldName), + fieldTerms = Object.create(null) + + this.fieldTermFrequencies[fieldRef] = fieldTerms + this.fieldLengths[fieldRef] = 0 + + // store the length of this field for this document + this.fieldLengths[fieldRef] += terms.length + + // calculate term frequencies for this field + for (var j = 0; j < terms.length; j++) { + var term = terms[j] + + if (fieldTerms[term] == undefined) { + fieldTerms[term] = 0 + } + + fieldTerms[term] += 1 + + // add to inverted index + // create an initial posting if one doesn't exist + if (this.invertedIndex[term] == undefined) { + var posting = Object.create(null) + posting["_index"] = this.termIndex + this.termIndex += 1 + + for (var k = 0; k < fields.length; k++) { + posting[fields[k]] = Object.create(null) + } + + this.invertedIndex[term] = posting + } + + // add an entry for this term/fieldName/docRef to the invertedIndex + if (this.invertedIndex[term][fieldName][docRef] == undefined) { + this.invertedIndex[term][fieldName][docRef] = Object.create(null) + } + + // store all whitelisted metadata about this token in the + // inverted index + for (var l = 0; l < this.metadataWhitelist.length; l++) { + var metadataKey = this.metadataWhitelist[l], + metadata = term.metadata[metadataKey] + + if (this.invertedIndex[term][fieldName][docRef][metadataKey] == undefined) { + this.invertedIndex[term][fieldName][docRef][metadataKey] = [] + } + + this.invertedIndex[term][fieldName][docRef][metadataKey].push(metadata) + } + } + + } +} + +/** + * Calculates the average document length for this index + * + * @private + */ +lunr.Builder.prototype.calculateAverageFieldLengths = function () { + + var fieldRefs = Object.keys(this.fieldLengths), + numberOfFields = fieldRefs.length, + accumulator = {}, + documentsWithField = {} + + for (var i = 0; i < numberOfFields; i++) { + var fieldRef = lunr.FieldRef.fromString(fieldRefs[i]), + field = fieldRef.fieldName + + documentsWithField[field] || (documentsWithField[field] = 0) + documentsWithField[field] += 1 + + accumulator[field] || (accumulator[field] = 0) + accumulator[field] += this.fieldLengths[fieldRef] + } + + var fields = Object.keys(this._fields) + + for (var i = 0; i < fields.length; i++) { + var fieldName = fields[i] + accumulator[fieldName] = accumulator[fieldName] / documentsWithField[fieldName] + } + + this.averageFieldLength = accumulator +} + +/** + * Builds a vector space model of every document using lunr.Vector + * + * @private + */ +lunr.Builder.prototype.createFieldVectors = function () { + var fieldVectors = {}, + fieldRefs = Object.keys(this.fieldTermFrequencies), + fieldRefsLength = fieldRefs.length, + termIdfCache = Object.create(null) + + for (var i = 0; i < fieldRefsLength; i++) { + var fieldRef = lunr.FieldRef.fromString(fieldRefs[i]), + fieldName = fieldRef.fieldName, + fieldLength = this.fieldLengths[fieldRef], + fieldVector = new lunr.Vector, + termFrequencies = this.fieldTermFrequencies[fieldRef], + terms = Object.keys(termFrequencies), + termsLength = terms.length + + + var fieldBoost = this._fields[fieldName].boost || 1, + docBoost = this._documents[fieldRef.docRef].boost || 1 + + for (var j = 0; j < termsLength; j++) { + var term = terms[j], + tf = termFrequencies[term], + termIndex = this.invertedIndex[term]._index, + idf, score, scoreWithPrecision + + if (termIdfCache[term] === undefined) { + idf = lunr.idf(this.invertedIndex[term], this.documentCount) + termIdfCache[term] = idf + } else { + idf = termIdfCache[term] + } + + score = idf * ((this._k1 + 1) * tf) / (this._k1 * (1 - this._b + this._b * (fieldLength / this.averageFieldLength[fieldName])) + tf) + score *= fieldBoost + score *= docBoost + scoreWithPrecision = Math.round(score * 1000) / 1000 + // Converts 1.23456789 to 1.234. + // Reducing the precision so that the vectors take up less + // space when serialised. Doing it now so that they behave + // the same before and after serialisation. Also, this is + // the fastest approach to reducing a number's precision in + // JavaScript. + + fieldVector.insert(termIndex, scoreWithPrecision) + } + + fieldVectors[fieldRef] = fieldVector + } + + this.fieldVectors = fieldVectors +} + +/** + * Creates a token set of all tokens in the index using lunr.TokenSet + * + * @private + */ +lunr.Builder.prototype.createTokenSet = function () { + this.tokenSet = lunr.TokenSet.fromArray( + Object.keys(this.invertedIndex).sort() + ) +} + +/** + * Builds the index, creating an instance of lunr.Index. + * + * This completes the indexing process and should only be called + * once all documents have been added to the index. + * + * @returns {lunr.Index} + */ +lunr.Builder.prototype.build = function () { + this.calculateAverageFieldLengths() + this.createFieldVectors() + this.createTokenSet() + + return new lunr.Index({ + invertedIndex: this.invertedIndex, + fieldVectors: this.fieldVectors, + tokenSet: this.tokenSet, + fields: Object.keys(this._fields), + pipeline: this.searchPipeline + }) +} + +/** + * Applies a plugin to the index builder. + * + * A plugin is a function that is called with the index builder as its context. + * Plugins can be used to customise or extend the behaviour of the index + * in some way. A plugin is just a function, that encapsulated the custom + * behaviour that should be applied when building the index. + * + * The plugin function will be called with the index builder as its argument, additional + * arguments can also be passed when calling use. The function will be called + * with the index builder as its context. + * + * @param {Function} plugin The plugin to apply. + */ +lunr.Builder.prototype.use = function (fn) { + var args = Array.prototype.slice.call(arguments, 1) + args.unshift(this) + fn.apply(this, args) +} +/** + * Contains and collects metadata about a matching document. + * A single instance of lunr.MatchData is returned as part of every + * lunr.Index~Result. + * + * @constructor + * @param {string} term - The term this match data is associated with + * @param {string} field - The field in which the term was found + * @param {object} metadata - The metadata recorded about this term in this field + * @property {object} metadata - A cloned collection of metadata associated with this document. + * @see {@link lunr.Index~Result} + */ +lunr.MatchData = function (term, field, metadata) { + var clonedMetadata = Object.create(null), + metadataKeys = Object.keys(metadata || {}) + + // Cloning the metadata to prevent the original + // being mutated during match data combination. + // Metadata is kept in an array within the inverted + // index so cloning the data can be done with + // Array#slice + for (var i = 0; i < metadataKeys.length; i++) { + var key = metadataKeys[i] + clonedMetadata[key] = metadata[key].slice() + } + + this.metadata = Object.create(null) + + if (term !== undefined) { + this.metadata[term] = Object.create(null) + this.metadata[term][field] = clonedMetadata + } +} + +/** + * An instance of lunr.MatchData will be created for every term that matches a + * document. However only one instance is required in a lunr.Index~Result. This + * method combines metadata from another instance of lunr.MatchData with this + * objects metadata. + * + * @param {lunr.MatchData} otherMatchData - Another instance of match data to merge with this one. + * @see {@link lunr.Index~Result} + */ +lunr.MatchData.prototype.combine = function (otherMatchData) { + var terms = Object.keys(otherMatchData.metadata) + + for (var i = 0; i < terms.length; i++) { + var term = terms[i], + fields = Object.keys(otherMatchData.metadata[term]) + + if (this.metadata[term] == undefined) { + this.metadata[term] = Object.create(null) + } + + for (var j = 0; j < fields.length; j++) { + var field = fields[j], + keys = Object.keys(otherMatchData.metadata[term][field]) + + if (this.metadata[term][field] == undefined) { + this.metadata[term][field] = Object.create(null) + } + + for (var k = 0; k < keys.length; k++) { + var key = keys[k] + + if (this.metadata[term][field][key] == undefined) { + this.metadata[term][field][key] = otherMatchData.metadata[term][field][key] + } else { + this.metadata[term][field][key] = this.metadata[term][field][key].concat(otherMatchData.metadata[term][field][key]) + } + + } + } + } +} + +/** + * Add metadata for a term/field pair to this instance of match data. + * + * @param {string} term - The term this match data is associated with + * @param {string} field - The field in which the term was found + * @param {object} metadata - The metadata recorded about this term in this field + */ +lunr.MatchData.prototype.add = function (term, field, metadata) { + if (!(term in this.metadata)) { + this.metadata[term] = Object.create(null) + this.metadata[term][field] = metadata + return + } + + if (!(field in this.metadata[term])) { + this.metadata[term][field] = metadata + return + } + + var metadataKeys = Object.keys(metadata) + + for (var i = 0; i < metadataKeys.length; i++) { + var key = metadataKeys[i] + + if (key in this.metadata[term][field]) { + this.metadata[term][field][key] = this.metadata[term][field][key].concat(metadata[key]) + } else { + this.metadata[term][field][key] = metadata[key] + } + } +} +/** + * A lunr.Query provides a programmatic way of defining queries to be performed + * against a {@link lunr.Index}. + * + * Prefer constructing a lunr.Query using the {@link lunr.Index#query} method + * so the query object is pre-initialized with the right index fields. + * + * @constructor + * @property {lunr.Query~Clause[]} clauses - An array of query clauses. + * @property {string[]} allFields - An array of all available fields in a lunr.Index. + */ +lunr.Query = function (allFields) { + this.clauses = [] + this.allFields = allFields +} + +/** + * Constants for indicating what kind of automatic wildcard insertion will be used when constructing a query clause. + * + * This allows wildcards to be added to the beginning and end of a term without having to manually do any string + * concatenation. + * + * The wildcard constants can be bitwise combined to select both leading and trailing wildcards. + * + * @constant + * @default + * @property {number} wildcard.NONE - The term will have no wildcards inserted, this is the default behaviour + * @property {number} wildcard.LEADING - Prepend the term with a wildcard, unless a leading wildcard already exists + * @property {number} wildcard.TRAILING - Append a wildcard to the term, unless a trailing wildcard already exists + * @see lunr.Query~Clause + * @see lunr.Query#clause + * @see lunr.Query#term + * @example query term with trailing wildcard + * query.term('foo', { wildcard: lunr.Query.wildcard.TRAILING }) + * @example query term with leading and trailing wildcard + * query.term('foo', { + * wildcard: lunr.Query.wildcard.LEADING | lunr.Query.wildcard.TRAILING + * }) + */ + +lunr.Query.wildcard = new String ("*") +lunr.Query.wildcard.NONE = 0 +lunr.Query.wildcard.LEADING = 1 +lunr.Query.wildcard.TRAILING = 2 + +/** + * Constants for indicating what kind of presence a term must have in matching documents. + * + * @constant + * @enum {number} + * @see lunr.Query~Clause + * @see lunr.Query#clause + * @see lunr.Query#term + * @example query term with required presence + * query.term('foo', { presence: lunr.Query.presence.REQUIRED }) + */ +lunr.Query.presence = { + /** + * Term's presence in a document is optional, this is the default value. + */ + OPTIONAL: 1, + + /** + * Term's presence in a document is required, documents that do not contain + * this term will not be returned. + */ + REQUIRED: 2, + + /** + * Term's presence in a document is prohibited, documents that do contain + * this term will not be returned. + */ + PROHIBITED: 3 +} + +/** + * A single clause in a {@link lunr.Query} contains a term and details on how to + * match that term against a {@link lunr.Index}. + * + * @typedef {Object} lunr.Query~Clause + * @property {string[]} fields - The fields in an index this clause should be matched against. + * @property {number} [boost=1] - Any boost that should be applied when matching this clause. + * @property {number} [editDistance] - Whether the term should have fuzzy matching applied, and how fuzzy the match should be. + * @property {boolean} [usePipeline] - Whether the term should be passed through the search pipeline. + * @property {number} [wildcard=lunr.Query.wildcard.NONE] - Whether the term should have wildcards appended or prepended. + * @property {number} [presence=lunr.Query.presence.OPTIONAL] - The terms presence in any matching documents. + */ + +/** + * Adds a {@link lunr.Query~Clause} to this query. + * + * Unless the clause contains the fields to be matched all fields will be matched. In addition + * a default boost of 1 is applied to the clause. + * + * @param {lunr.Query~Clause} clause - The clause to add to this query. + * @see lunr.Query~Clause + * @returns {lunr.Query} + */ +lunr.Query.prototype.clause = function (clause) { + if (!('fields' in clause)) { + clause.fields = this.allFields + } + + if (!('boost' in clause)) { + clause.boost = 1 + } + + if (!('usePipeline' in clause)) { + clause.usePipeline = true + } + + if (!('wildcard' in clause)) { + clause.wildcard = lunr.Query.wildcard.NONE + } + + if ((clause.wildcard & lunr.Query.wildcard.LEADING) && (clause.term.charAt(0) != lunr.Query.wildcard)) { + clause.term = "*" + clause.term + } + + if ((clause.wildcard & lunr.Query.wildcard.TRAILING) && (clause.term.slice(-1) != lunr.Query.wildcard)) { + clause.term = "" + clause.term + "*" + } + + if (!('presence' in clause)) { + clause.presence = lunr.Query.presence.OPTIONAL + } + + this.clauses.push(clause) + + return this +} + +/** + * A negated query is one in which every clause has a presence of + * prohibited. These queries require some special processing to return + * the expected results. + * + * @returns boolean + */ +lunr.Query.prototype.isNegated = function () { + for (var i = 0; i < this.clauses.length; i++) { + if (this.clauses[i].presence != lunr.Query.presence.PROHIBITED) { + return false + } + } + + return true +} + +/** + * Adds a term to the current query, under the covers this will create a {@link lunr.Query~Clause} + * to the list of clauses that make up this query. + * + * The term is used as is, i.e. no tokenization will be performed by this method. Instead conversion + * to a token or token-like string should be done before calling this method. + * + * The term will be converted to a string by calling `toString`. Multiple terms can be passed as an + * array, each term in the array will share the same options. + * + * @param {object|object[]} term - The term(s) to add to the query. + * @param {object} [options] - Any additional properties to add to the query clause. + * @returns {lunr.Query} + * @see lunr.Query#clause + * @see lunr.Query~Clause + * @example adding a single term to a query + * query.term("foo") + * @example adding a single term to a query and specifying search fields, term boost and automatic trailing wildcard + * query.term("foo", { + * fields: ["title"], + * boost: 10, + * wildcard: lunr.Query.wildcard.TRAILING + * }) + * @example using lunr.tokenizer to convert a string to tokens before using them as terms + * query.term(lunr.tokenizer("foo bar")) + */ +lunr.Query.prototype.term = function (term, options) { + if (Array.isArray(term)) { + term.forEach(function (t) { this.term(t, lunr.utils.clone(options)) }, this) + return this + } + + var clause = options || {} + clause.term = term.toString() + + this.clause(clause) + + return this +} +lunr.QueryParseError = function (message, start, end) { + this.name = "QueryParseError" + this.message = message + this.start = start + this.end = end +} + +lunr.QueryParseError.prototype = new Error +lunr.QueryLexer = function (str) { + this.lexemes = [] + this.str = str + this.length = str.length + this.pos = 0 + this.start = 0 + this.escapeCharPositions = [] +} + +lunr.QueryLexer.prototype.run = function () { + var state = lunr.QueryLexer.lexText + + while (state) { + state = state(this) + } +} + +lunr.QueryLexer.prototype.sliceString = function () { + var subSlices = [], + sliceStart = this.start, + sliceEnd = this.pos + + for (var i = 0; i < this.escapeCharPositions.length; i++) { + sliceEnd = this.escapeCharPositions[i] + subSlices.push(this.str.slice(sliceStart, sliceEnd)) + sliceStart = sliceEnd + 1 + } + + subSlices.push(this.str.slice(sliceStart, this.pos)) + this.escapeCharPositions.length = 0 + + return subSlices.join('') +} + +lunr.QueryLexer.prototype.emit = function (type) { + this.lexemes.push({ + type: type, + str: this.sliceString(), + start: this.start, + end: this.pos + }) + + this.start = this.pos +} + +lunr.QueryLexer.prototype.escapeCharacter = function () { + this.escapeCharPositions.push(this.pos - 1) + this.pos += 1 +} + +lunr.QueryLexer.prototype.next = function () { + if (this.pos >= this.length) { + return lunr.QueryLexer.EOS + } + + var char = this.str.charAt(this.pos) + this.pos += 1 + return char +} + +lunr.QueryLexer.prototype.width = function () { + return this.pos - this.start +} + +lunr.QueryLexer.prototype.ignore = function () { + if (this.start == this.pos) { + this.pos += 1 + } + + this.start = this.pos +} + +lunr.QueryLexer.prototype.backup = function () { + this.pos -= 1 +} + +lunr.QueryLexer.prototype.acceptDigitRun = function () { + var char, charCode + + do { + char = this.next() + charCode = char.charCodeAt(0) + } while (charCode > 47 && charCode < 58) + + if (char != lunr.QueryLexer.EOS) { + this.backup() + } +} + +lunr.QueryLexer.prototype.more = function () { + return this.pos < this.length +} + +lunr.QueryLexer.EOS = 'EOS' +lunr.QueryLexer.FIELD = 'FIELD' +lunr.QueryLexer.TERM = 'TERM' +lunr.QueryLexer.EDIT_DISTANCE = 'EDIT_DISTANCE' +lunr.QueryLexer.BOOST = 'BOOST' +lunr.QueryLexer.PRESENCE = 'PRESENCE' + +lunr.QueryLexer.lexField = function (lexer) { + lexer.backup() + lexer.emit(lunr.QueryLexer.FIELD) + lexer.ignore() + return lunr.QueryLexer.lexText +} + +lunr.QueryLexer.lexTerm = function (lexer) { + if (lexer.width() > 1) { + lexer.backup() + lexer.emit(lunr.QueryLexer.TERM) + } + + lexer.ignore() + + if (lexer.more()) { + return lunr.QueryLexer.lexText + } +} + +lunr.QueryLexer.lexEditDistance = function (lexer) { + lexer.ignore() + lexer.acceptDigitRun() + lexer.emit(lunr.QueryLexer.EDIT_DISTANCE) + return lunr.QueryLexer.lexText +} + +lunr.QueryLexer.lexBoost = function (lexer) { + lexer.ignore() + lexer.acceptDigitRun() + lexer.emit(lunr.QueryLexer.BOOST) + return lunr.QueryLexer.lexText +} + +lunr.QueryLexer.lexEOS = function (lexer) { + if (lexer.width() > 0) { + lexer.emit(lunr.QueryLexer.TERM) + } +} + +// This matches the separator used when tokenising fields +// within a document. These should match otherwise it is +// not possible to search for some tokens within a document. +// +// It is possible for the user to change the separator on the +// tokenizer so it _might_ clash with any other of the special +// characters already used within the search string, e.g. :. +// +// This means that it is possible to change the separator in +// such a way that makes some words unsearchable using a search +// string. +lunr.QueryLexer.termSeparator = lunr.tokenizer.separator + +lunr.QueryLexer.lexText = function (lexer) { + while (true) { + var char = lexer.next() + + if (char == lunr.QueryLexer.EOS) { + return lunr.QueryLexer.lexEOS + } + + // Escape character is '\' + if (char.charCodeAt(0) == 92) { + lexer.escapeCharacter() + continue + } + + if (char == ":") { + return lunr.QueryLexer.lexField + } + + if (char == "~") { + lexer.backup() + if (lexer.width() > 0) { + lexer.emit(lunr.QueryLexer.TERM) + } + return lunr.QueryLexer.lexEditDistance + } + + if (char == "^") { + lexer.backup() + if (lexer.width() > 0) { + lexer.emit(lunr.QueryLexer.TERM) + } + return lunr.QueryLexer.lexBoost + } + + // "+" indicates term presence is required + // checking for length to ensure that only + // leading "+" are considered + if (char == "+" && lexer.width() === 1) { + lexer.emit(lunr.QueryLexer.PRESENCE) + return lunr.QueryLexer.lexText + } + + // "-" indicates term presence is prohibited + // checking for length to ensure that only + // leading "-" are considered + if (char == "-" && lexer.width() === 1) { + lexer.emit(lunr.QueryLexer.PRESENCE) + return lunr.QueryLexer.lexText + } + + if (char.match(lunr.QueryLexer.termSeparator)) { + return lunr.QueryLexer.lexTerm + } + } +} + +lunr.QueryParser = function (str, query) { + this.lexer = new lunr.QueryLexer (str) + this.query = query + this.currentClause = {} + this.lexemeIdx = 0 +} + +lunr.QueryParser.prototype.parse = function () { + this.lexer.run() + this.lexemes = this.lexer.lexemes + + var state = lunr.QueryParser.parseClause + + while (state) { + state = state(this) + } + + return this.query +} + +lunr.QueryParser.prototype.peekLexeme = function () { + return this.lexemes[this.lexemeIdx] +} + +lunr.QueryParser.prototype.consumeLexeme = function () { + var lexeme = this.peekLexeme() + this.lexemeIdx += 1 + return lexeme +} + +lunr.QueryParser.prototype.nextClause = function () { + var completedClause = this.currentClause + this.query.clause(completedClause) + this.currentClause = {} +} + +lunr.QueryParser.parseClause = function (parser) { + var lexeme = parser.peekLexeme() + + if (lexeme == undefined) { + return + } + + switch (lexeme.type) { + case lunr.QueryLexer.PRESENCE: + return lunr.QueryParser.parsePresence + case lunr.QueryLexer.FIELD: + return lunr.QueryParser.parseField + case lunr.QueryLexer.TERM: + return lunr.QueryParser.parseTerm + default: + var errorMessage = "expected either a field or a term, found " + lexeme.type + + if (lexeme.str.length >= 1) { + errorMessage += " with value '" + lexeme.str + "'" + } + + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } +} + +lunr.QueryParser.parsePresence = function (parser) { + var lexeme = parser.consumeLexeme() + + if (lexeme == undefined) { + return + } + + switch (lexeme.str) { + case "-": + parser.currentClause.presence = lunr.Query.presence.PROHIBITED + break + case "+": + parser.currentClause.presence = lunr.Query.presence.REQUIRED + break + default: + var errorMessage = "unrecognised presence operator'" + lexeme.str + "'" + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } + + var nextLexeme = parser.peekLexeme() + + if (nextLexeme == undefined) { + var errorMessage = "expecting term or field, found nothing" + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } + + switch (nextLexeme.type) { + case lunr.QueryLexer.FIELD: + return lunr.QueryParser.parseField + case lunr.QueryLexer.TERM: + return lunr.QueryParser.parseTerm + default: + var errorMessage = "expecting term or field, found '" + nextLexeme.type + "'" + throw new lunr.QueryParseError (errorMessage, nextLexeme.start, nextLexeme.end) + } +} + +lunr.QueryParser.parseField = function (parser) { + var lexeme = parser.consumeLexeme() + + if (lexeme == undefined) { + return + } + + if (parser.query.allFields.indexOf(lexeme.str) == -1) { + var possibleFields = parser.query.allFields.map(function (f) { return "'" + f + "'" }).join(', '), + errorMessage = "unrecognised field '" + lexeme.str + "', possible fields: " + possibleFields + + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } + + parser.currentClause.fields = [lexeme.str] + + var nextLexeme = parser.peekLexeme() + + if (nextLexeme == undefined) { + var errorMessage = "expecting term, found nothing" + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } + + switch (nextLexeme.type) { + case lunr.QueryLexer.TERM: + return lunr.QueryParser.parseTerm + default: + var errorMessage = "expecting term, found '" + nextLexeme.type + "'" + throw new lunr.QueryParseError (errorMessage, nextLexeme.start, nextLexeme.end) + } +} + +lunr.QueryParser.parseTerm = function (parser) { + var lexeme = parser.consumeLexeme() + + if (lexeme == undefined) { + return + } + + parser.currentClause.term = lexeme.str.toLowerCase() + + if (lexeme.str.indexOf("*") != -1) { + parser.currentClause.usePipeline = false + } + + var nextLexeme = parser.peekLexeme() + + if (nextLexeme == undefined) { + parser.nextClause() + return + } + + switch (nextLexeme.type) { + case lunr.QueryLexer.TERM: + parser.nextClause() + return lunr.QueryParser.parseTerm + case lunr.QueryLexer.FIELD: + parser.nextClause() + return lunr.QueryParser.parseField + case lunr.QueryLexer.EDIT_DISTANCE: + return lunr.QueryParser.parseEditDistance + case lunr.QueryLexer.BOOST: + return lunr.QueryParser.parseBoost + case lunr.QueryLexer.PRESENCE: + parser.nextClause() + return lunr.QueryParser.parsePresence + default: + var errorMessage = "Unexpected lexeme type '" + nextLexeme.type + "'" + throw new lunr.QueryParseError (errorMessage, nextLexeme.start, nextLexeme.end) + } +} + +lunr.QueryParser.parseEditDistance = function (parser) { + var lexeme = parser.consumeLexeme() + + if (lexeme == undefined) { + return + } + + var editDistance = parseInt(lexeme.str, 10) + + if (isNaN(editDistance)) { + var errorMessage = "edit distance must be numeric" + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } + + parser.currentClause.editDistance = editDistance + + var nextLexeme = parser.peekLexeme() + + if (nextLexeme == undefined) { + parser.nextClause() + return + } + + switch (nextLexeme.type) { + case lunr.QueryLexer.TERM: + parser.nextClause() + return lunr.QueryParser.parseTerm + case lunr.QueryLexer.FIELD: + parser.nextClause() + return lunr.QueryParser.parseField + case lunr.QueryLexer.EDIT_DISTANCE: + return lunr.QueryParser.parseEditDistance + case lunr.QueryLexer.BOOST: + return lunr.QueryParser.parseBoost + case lunr.QueryLexer.PRESENCE: + parser.nextClause() + return lunr.QueryParser.parsePresence + default: + var errorMessage = "Unexpected lexeme type '" + nextLexeme.type + "'" + throw new lunr.QueryParseError (errorMessage, nextLexeme.start, nextLexeme.end) + } +} + +lunr.QueryParser.parseBoost = function (parser) { + var lexeme = parser.consumeLexeme() + + if (lexeme == undefined) { + return + } + + var boost = parseInt(lexeme.str, 10) + + if (isNaN(boost)) { + var errorMessage = "boost must be numeric" + throw new lunr.QueryParseError (errorMessage, lexeme.start, lexeme.end) + } + + parser.currentClause.boost = boost + + var nextLexeme = parser.peekLexeme() + + if (nextLexeme == undefined) { + parser.nextClause() + return + } + + switch (nextLexeme.type) { + case lunr.QueryLexer.TERM: + parser.nextClause() + return lunr.QueryParser.parseTerm + case lunr.QueryLexer.FIELD: + parser.nextClause() + return lunr.QueryParser.parseField + case lunr.QueryLexer.EDIT_DISTANCE: + return lunr.QueryParser.parseEditDistance + case lunr.QueryLexer.BOOST: + return lunr.QueryParser.parseBoost + case lunr.QueryLexer.PRESENCE: + parser.nextClause() + return lunr.QueryParser.parsePresence + default: + var errorMessage = "Unexpected lexeme type '" + nextLexeme.type + "'" + throw new lunr.QueryParseError (errorMessage, nextLexeme.start, nextLexeme.end) + } +} + + /** + * export the module via AMD, CommonJS or as a browser global + * Export code from https://github.com/umdjs/umd/blob/master/returnExports.js + */ + ;(function (root, factory) { + if (typeof define === 'function' && define.amd) { + // AMD. Register as an anonymous module. + define(factory) + } else if (typeof exports === 'object') { + /** + * Node. Does not work with strict CommonJS, but + * only CommonJS-like environments that support module.exports, + * like Node. + */ + module.exports = factory() + } else { + // Browser globals (root is window) + root.lunr = factory() + } + }(this, function () { + /** + * Just return a value to define the module export. + * This example returns an object, but the module + * can return a function as the exported value. + */ + return lunr + })) +})(); diff --git a/search/main.js b/search/main.js new file mode 100644 index 00000000..a5e469d7 --- /dev/null +++ b/search/main.js @@ -0,0 +1,109 @@ +function getSearchTermFromLocation() { + var sPageURL = window.location.search.substring(1); + var sURLVariables = sPageURL.split('&'); + for (var i = 0; i < sURLVariables.length; i++) { + var sParameterName = sURLVariables[i].split('='); + if (sParameterName[0] == 'q') { + return decodeURIComponent(sParameterName[1].replace(/\+/g, '%20')); + } + } +} + +function joinUrl (base, path) { + if (path.substring(0, 1) === "/") { + // path starts with `/`. Thus it is absolute. + return path; + } + if (base.substring(base.length-1) === "/") { + // base ends with `/` + return base + path; + } + return base + "/" + path; +} + +function escapeHtml (value) { + return value.replace(/&/g, '&') + .replace(/"/g, '"') + .replace(//g, '>'); +} + +function formatResult (location, title, summary) { + return ''; +} + +function displayResults (results) { + var search_results = document.getElementById("mkdocs-search-results"); + while (search_results.firstChild) { + search_results.removeChild(search_results.firstChild); + } + if (results.length > 0){ + for (var i=0; i < results.length; i++){ + var result = results[i]; + var html = formatResult(result.location, result.title, result.summary); + search_results.insertAdjacentHTML('beforeend', html); + } + } else { + var noResultsText = search_results.getAttribute('data-no-results-text'); + if (!noResultsText) { + noResultsText = "No results found"; + } + search_results.insertAdjacentHTML('beforeend', '

' + noResultsText + '

'); + } +} + +function doSearch () { + var query = document.getElementById('mkdocs-search-query').value; + if (query.length > min_search_length) { + if (!window.Worker) { + displayResults(search(query)); + } else { + searchWorker.postMessage({query: query}); + } + } else { + // Clear results for short queries + displayResults([]); + } +} + +function initSearch () { + var search_input = document.getElementById('mkdocs-search-query'); + if (search_input) { + search_input.addEventListener("keyup", doSearch); + } + var term = getSearchTermFromLocation(); + if (term) { + search_input.value = term; + doSearch(); + } +} + +function onWorkerMessage (e) { + if (e.data.allowSearch) { + initSearch(); + } else if (e.data.results) { + var results = e.data.results; + displayResults(results); + } else if (e.data.config) { + min_search_length = e.data.config.min_search_length-1; + } +} + +if (!window.Worker) { + console.log('Web Worker API not supported'); + // load index in main thread + $.getScript(joinUrl(base_url, "search/worker.js")).done(function () { + console.log('Loaded worker'); + init(); + window.postMessage = function (msg) { + onWorkerMessage({data: msg}); + }; + }).fail(function (jqxhr, settings, exception) { + console.error('Could not load worker.js'); + }); +} else { + // Wrap search in a web worker + var searchWorker = new Worker(joinUrl(base_url, "search/worker.js")); + searchWorker.postMessage({init: true}); + searchWorker.onmessage = onWorkerMessage; +} diff --git a/search/search_index.json b/search/search_index.json new file mode 100644 index 00000000..923ca09e --- /dev/null +++ b/search/search_index.json @@ -0,0 +1 @@ +{"config":{"indexing":"full","lang":["en"],"min_search_length":3,"prebuild_index":false,"separator":"[\\s\\-]+"},"docs":[{"location":"","text":"Welcome to Meggie \u00b6 Meggie is an open-source software designed for intuitive MEG and EEG analysis. With its user-friendly graphical interface, Meggie brings the powerful analysis methods of MNE-Python to researchers without requiring programming skills. Key Features \u00b6 Cross-Platform : Runs on Linux, macOS, and Windows. User-Friendly : Simple graphical user interface for ease of use. Efficient Workflows : Supports multi-subject experiments and pipeline processing for streamlined analysis. Get started with Meggie and explore its features to simplify your MEG/EEG analysis. Getting Started","title":"Home"},{"location":"#welcome-to-meggie","text":"Meggie is an open-source software designed for intuitive MEG and EEG analysis. With its user-friendly graphical interface, Meggie brings the powerful analysis methods of MNE-Python to researchers without requiring programming skills.","title":"Welcome to Meggie"},{"location":"#key-features","text":"Cross-Platform : Runs on Linux, macOS, and Windows. User-Friendly : Simple graphical user interface for ease of use. Efficient Workflows : Supports multi-subject experiments and pipeline processing for streamlined analysis. Get started with Meggie and explore its features to simplify your MEG/EEG analysis. Getting Started","title":"Key Features"},{"location":"about/","text":"About Meggie \u00b6 Developed at the Jyv\u00e4skyl\u00e4 Centre for Interdisciplinary Brain Research (CIBR), Meggie is the result of a project that started in 2013, with the mission to make sophisticated M/EEG analysis accessible to all researchers. Meggie builds upon the MNE-Python library to deliver a robust set of features through an intuitive interface. Design Philosophy \u00b6 Meggie focuses on: Multi-Subject Management : It makes it easy to work with many subjects' data at once. Clear Analysis Steps : It helps users go step by step from starting data to results. Compared to other tools like FieldTrip, MNE-Python, EEGLAB, Brainstorm, and mnelab, Meggie is unique because it's built with Python, it's easy for anyone to use, and it's designed for handling multiple subjects' data efficiently. Plugins \u00b6 Meggie can be changed and added to with plugins. If you know Python, you can create new features. This helps Meggie grow and helps everyone who uses it. To learn more, see our Developer Documentation .","title":"About"},{"location":"about/#about-meggie","text":"Developed at the Jyv\u00e4skyl\u00e4 Centre for Interdisciplinary Brain Research (CIBR), Meggie is the result of a project that started in 2013, with the mission to make sophisticated M/EEG analysis accessible to all researchers. Meggie builds upon the MNE-Python library to deliver a robust set of features through an intuitive interface.","title":"About Meggie"},{"location":"about/#design-philosophy","text":"Meggie focuses on: Multi-Subject Management : It makes it easy to work with many subjects' data at once. Clear Analysis Steps : It helps users go step by step from starting data to results. Compared to other tools like FieldTrip, MNE-Python, EEGLAB, Brainstorm, and mnelab, Meggie is unique because it's built with Python, it's easy for anyone to use, and it's designed for handling multiple subjects' data efficiently.","title":"Design Philosophy"},{"location":"about/#plugins","text":"Meggie can be changed and added to with plugins. If you know Python, you can create new features. This helps Meggie grow and helps everyone who uses it. To learn more, see our Developer Documentation .","title":"Plugins"},{"location":"developer-guide/architecture/","text":"Architecture Overview \u00b6 This document outlines the core structure of Meggie, offering insights into its construction and how developers can leverage its architecture. Main Classes \u00b6 Meggie is structured around three fundamental classes: MainWindow \u00b6 MainWindow is the central hub of the user interface, built using PyQt5. Key components include: Left Panel: Displays experiment-specific details. Bottom Console: Logs user actions and system messages. Right Panel: Hosts tabs for data transformation actions. Experiment \u00b6 The Experiment class serves as the top-level container for all data, handling the saving and loading of experiments, and maintaining a collection of subjects. Subject \u00b6 Subject instances are nested within experiments and are tasked with managing subject-specific data. Their primary roles are to handle the saving and loading of raw data and to hold instances of various datatypes. Actions, Pipelines, and Datatypes \u00b6 Meggie's analytical capabilities are structured into actions, pipelines, and datatypes. Datatypes \u00b6 Datatypes are templates for summarizing raw data into meaningful structures for analysis, such as epochs, evokeds, spectrums, and TFRs. These templates are defined within the datatypes folder and instantiated as needed to store within subjects. Actions \u00b6 Actions represent fundamental analysis steps, like \"filter\" or \"create epochs.\" Each action, located in its respective folder within the actions directory, comprises metadata in configuration.json and Python code. Actions inherit from the Action class in mainwindow/dynamic.py and can be integrated into pipelines and are automatically logged. Pipelines \u00b6 Pipelines organize actions into a sequence represented as buttons within the GUI tabs. They guide the user through a complete analysis workflow, such as \"Sensor-level continuous data analysis.\" Pipelines are specified in the main configuration.json and rely on actions for implementation, thus containing no Python code themselves. Plugins \u00b6 Creating plugins for Meggie is designed to be straightforward. The system dynamically locates pipelines, datatypes, and actions at runtime, allowing them to be loaded from external Python packages within the Meggie namespace. To create a plugin, one simply needs to develop a Python package named within the Meggie namespace that introduces new pipelines, actions, and/or datatypes. API \u00b6 The core of Meggie, excluding the actions, is intended to be stable and reusable. Plugin developers are encouraged to utilize the API provided by the MainWindow, Subject, and Experiment classes. Additionally, developers have access to the four datatypes in the datatypes folder and various utilities, including functions, dialogs, and widgets, found in the utilities folder.","title":"Architecture"},{"location":"developer-guide/architecture/#architecture-overview","text":"This document outlines the core structure of Meggie, offering insights into its construction and how developers can leverage its architecture.","title":"Architecture Overview"},{"location":"developer-guide/architecture/#main-classes","text":"Meggie is structured around three fundamental classes:","title":"Main Classes"},{"location":"developer-guide/architecture/#mainwindow","text":"MainWindow is the central hub of the user interface, built using PyQt5. Key components include: Left Panel: Displays experiment-specific details. Bottom Console: Logs user actions and system messages. Right Panel: Hosts tabs for data transformation actions.","title":"MainWindow"},{"location":"developer-guide/architecture/#experiment","text":"The Experiment class serves as the top-level container for all data, handling the saving and loading of experiments, and maintaining a collection of subjects.","title":"Experiment"},{"location":"developer-guide/architecture/#subject","text":"Subject instances are nested within experiments and are tasked with managing subject-specific data. Their primary roles are to handle the saving and loading of raw data and to hold instances of various datatypes.","title":"Subject"},{"location":"developer-guide/architecture/#actions-pipelines-and-datatypes","text":"Meggie's analytical capabilities are structured into actions, pipelines, and datatypes.","title":"Actions, Pipelines, and Datatypes"},{"location":"developer-guide/architecture/#datatypes","text":"Datatypes are templates for summarizing raw data into meaningful structures for analysis, such as epochs, evokeds, spectrums, and TFRs. These templates are defined within the datatypes folder and instantiated as needed to store within subjects.","title":"Datatypes"},{"location":"developer-guide/architecture/#actions","text":"Actions represent fundamental analysis steps, like \"filter\" or \"create epochs.\" Each action, located in its respective folder within the actions directory, comprises metadata in configuration.json and Python code. Actions inherit from the Action class in mainwindow/dynamic.py and can be integrated into pipelines and are automatically logged.","title":"Actions"},{"location":"developer-guide/architecture/#pipelines","text":"Pipelines organize actions into a sequence represented as buttons within the GUI tabs. They guide the user through a complete analysis workflow, such as \"Sensor-level continuous data analysis.\" Pipelines are specified in the main configuration.json and rely on actions for implementation, thus containing no Python code themselves.","title":"Pipelines"},{"location":"developer-guide/architecture/#plugins","text":"Creating plugins for Meggie is designed to be straightforward. The system dynamically locates pipelines, datatypes, and actions at runtime, allowing them to be loaded from external Python packages within the Meggie namespace. To create a plugin, one simply needs to develop a Python package named within the Meggie namespace that introduces new pipelines, actions, and/or datatypes.","title":"Plugins"},{"location":"developer-guide/architecture/#api","text":"The core of Meggie, excluding the actions, is intended to be stable and reusable. Plugin developers are encouraged to utilize the API provided by the MainWindow, Subject, and Experiment classes. Additionally, developers have access to the four datatypes in the datatypes folder and various utilities, including functions, dialogs, and widgets, found in the utilities folder.","title":"API"},{"location":"developer-guide/development/","text":"Development \u00b6 Setting up \u00b6 For an example of a basic plugin template, please visit Meggie Simple Plugin on GitHub. Actions, pipelines, and datatypes function identically, regardless of whether they originate from a plugin or from the core of Meggie. Therefore, examining the implementations within the Meggie repository is advisable for understanding their integration and usage.","title":"Development"},{"location":"developer-guide/development/#development","text":"","title":"Development"},{"location":"developer-guide/development/#setting-up","text":"For an example of a basic plugin template, please visit Meggie Simple Plugin on GitHub. Actions, pipelines, and datatypes function identically, regardless of whether they originate from a plugin or from the core of Meggie. Therefore, examining the implementations within the Meggie repository is advisable for understanding their integration and usage.","title":"Setting up"},{"location":"user-guide/actions/","text":"Actions \u00b6 Actions serve as the primary analytical tools within Meggie. Upon establishing an experiment and incorporating the raw data files for each subject, these actions are systematically employed to progressively convert the raw magnetic or electric signals into meaningful behavioral outcomes. Below is a catalog of the available actions along with their respective descriptions. Preprocessing \u00b6 Events from annotations (raw_events_from_annotations) \u00b6 Create events from annotations for further analysis. Filter (raw_filter) \u00b6 Apply low-pass, high-pass, band-pass, and band-stop filters to raw data to isolate specific frequency ranges or remove unwanted frequencies. Artifact removal (raw_ica) \u00b6 Apply Independent Component Analysis (ICA) to raw data to identify and remove artifacts such as heartbeats and eye blinks. Montage (raw_montage) \u00b6 Apply a montage to the EEG dataset, enabling the creation of topographical plots. Plot raw (raw_plot) \u00b6 Produce a time series plot of the raw data. Plot projections (raw_plot_projections) \u00b6 Generate a plot to visualize the projection vectors contained within the raw data. Rereference (raw_rereference) \u00b6 Re-reference the raw data to an average reference, which can be computed from one or more selected channels or all channels. Resample (raw_resample) \u00b6 Adjust the dataset by resampling it to a different sampling frequency. Continuous data \u00b6 Create spectrum (spectrum_create) \u00b6 Calculate the spectral data at specified time intervals for the current subject. Delete (spectrum_delete) \u00b6 Permanently remove the selected spectrum object from the current subject. Delete from all (spectrum_delete_from_all) \u00b6 Permanently remove the selected spectrum object from all matching subjects. Average over subjects (spectrum_group_average) \u00b6 Calculate the average of the selected spectrum object across subjects, with options to group subjects before averaging. Plot (spectrum_plot) \u00b6 Generate a plot for the selected spectrum object. The spectrum object may be visualized for all channels individually or as an average across specified channel groups. Save to csv (spectrum_save) \u00b6 Export the numerical data from the spectrum object for all matching subjects into a CSV file. Epochs \u00b6 Create epochs (epochs_create) \u00b6 Create a new epoch collection for the current subject. Delete (epochs_delete) \u00b6 Permanently remove the selected epoch collection from the current subject. Delete from all (epochs_delete_from_all) \u00b6 Permanently remove the selected epoch collection from all matching subjects. Plot (epochs_plot) \u00b6 Generate a simple plot for the selected epoch collection. Plot image (epochs_plot_image) \u00b6 Generate an image plot for the selected epoch collection. Evoked responses \u00b6 Create evoked (evoked_create) \u00b6 Compute the average of selected epoch collections independently. Each collection is averaged separately, resulting in a distinct average curve for each. Delete (evoked_delete) \u00b6 Permanently remove the selected evoked response object from the current subject. Delete from all (evoked_delete_from_all) \u00b6 Permanently remove the selected evoked response object from all matching subjects. Average over subjects (evoked_group_average) \u00b6 Calculate the average of the selected evoked response object across subjects, with options to group subjects before averaging. Plot (evoked_plot) \u00b6 Generate a plot for the selected evoked response object. The response may be visualized for all channels individually or as an average across specified channel groups. Plot topomaps (evoked_plot_topomap) \u00b6 Produce a series of topographical maps at specified time intervals for the selected evoked response object. Save to csv (evoked_save) \u00b6 Export the numerical data from the evoked response object for all matching subjects into a CSV file. Induced responses (TFR) \u00b6 Create TFR (tfr_create) \u00b6 Calculate time-frequency representations (TFRs) for selected epoch collections independently, with each collection yielding a unique TFR. Delete (tfr_delete) \u00b6 Permanently remove the selected TFR object from the current subject. Delete from all (tfr_delete_from_all) \u00b6 Permanently remove the selected TFR object from all matching subjects. Average over subjects (tfr_group_average) \u00b6 Calculate the average of the selected TFR object across subjects, with options to group subjects before averaging. Plot TFR (tfr_plot) \u00b6 Visualize the selected TFR object as a heatmap, with options for individual channel visualization or averaging across channel groups. Plot TSE (tfr_plot_tse) \u00b6 Visualize the Temporal Spectral Evolution (TSE) of the selected TFR object, collapsing the frequency dimension over a specified interval, for individual channels or averaged across channel groups. Save TFR to csv (tfr_save) \u00b6 Export the numerical data from the TFR object for all matching subjects into a CSV file. Save TSE to csv (tfr_save_tse) \u00b6 Export the TSE data from the TFR object, collapsing the frequency dimension over a specified interval, into a CSV file for all matching subjects.","title":"Actions"},{"location":"user-guide/actions/#actions","text":"Actions serve as the primary analytical tools within Meggie. Upon establishing an experiment and incorporating the raw data files for each subject, these actions are systematically employed to progressively convert the raw magnetic or electric signals into meaningful behavioral outcomes. Below is a catalog of the available actions along with their respective descriptions.","title":"Actions"},{"location":"user-guide/actions/#preprocessing","text":"","title":"Preprocessing"},{"location":"user-guide/actions/#events-from-annotations-raw_events_from_annotations","text":"Create events from annotations for further analysis.","title":"Events from annotations (raw_events_from_annotations)"},{"location":"user-guide/actions/#filter-raw_filter","text":"Apply low-pass, high-pass, band-pass, and band-stop filters to raw data to isolate specific frequency ranges or remove unwanted frequencies.","title":"Filter (raw_filter)"},{"location":"user-guide/actions/#artifact-removal-raw_ica","text":"Apply Independent Component Analysis (ICA) to raw data to identify and remove artifacts such as heartbeats and eye blinks.","title":"Artifact removal (raw_ica)"},{"location":"user-guide/actions/#montage-raw_montage","text":"Apply a montage to the EEG dataset, enabling the creation of topographical plots.","title":"Montage (raw_montage)"},{"location":"user-guide/actions/#plot-raw-raw_plot","text":"Produce a time series plot of the raw data.","title":"Plot raw (raw_plot)"},{"location":"user-guide/actions/#plot-projections-raw_plot_projections","text":"Generate a plot to visualize the projection vectors contained within the raw data.","title":"Plot projections (raw_plot_projections)"},{"location":"user-guide/actions/#rereference-raw_rereference","text":"Re-reference the raw data to an average reference, which can be computed from one or more selected channels or all channels.","title":"Rereference (raw_rereference)"},{"location":"user-guide/actions/#resample-raw_resample","text":"Adjust the dataset by resampling it to a different sampling frequency.","title":"Resample (raw_resample)"},{"location":"user-guide/actions/#continuous-data","text":"","title":"Continuous data"},{"location":"user-guide/actions/#create-spectrum-spectrum_create","text":"Calculate the spectral data at specified time intervals for the current subject.","title":"Create spectrum (spectrum_create)"},{"location":"user-guide/actions/#delete-spectrum_delete","text":"Permanently remove the selected spectrum object from the current subject.","title":"Delete (spectrum_delete)"},{"location":"user-guide/actions/#delete-from-all-spectrum_delete_from_all","text":"Permanently remove the selected spectrum object from all matching subjects.","title":"Delete from all (spectrum_delete_from_all)"},{"location":"user-guide/actions/#average-over-subjects-spectrum_group_average","text":"Calculate the average of the selected spectrum object across subjects, with options to group subjects before averaging.","title":"Average over subjects (spectrum_group_average)"},{"location":"user-guide/actions/#plot-spectrum_plot","text":"Generate a plot for the selected spectrum object. The spectrum object may be visualized for all channels individually or as an average across specified channel groups.","title":"Plot (spectrum_plot)"},{"location":"user-guide/actions/#save-to-csv-spectrum_save","text":"Export the numerical data from the spectrum object for all matching subjects into a CSV file.","title":"Save to csv (spectrum_save)"},{"location":"user-guide/actions/#epochs","text":"","title":"Epochs"},{"location":"user-guide/actions/#create-epochs-epochs_create","text":"Create a new epoch collection for the current subject.","title":"Create epochs (epochs_create)"},{"location":"user-guide/actions/#delete-epochs_delete","text":"Permanently remove the selected epoch collection from the current subject.","title":"Delete (epochs_delete)"},{"location":"user-guide/actions/#delete-from-all-epochs_delete_from_all","text":"Permanently remove the selected epoch collection from all matching subjects.","title":"Delete from all (epochs_delete_from_all)"},{"location":"user-guide/actions/#plot-epochs_plot","text":"Generate a simple plot for the selected epoch collection.","title":"Plot (epochs_plot)"},{"location":"user-guide/actions/#plot-image-epochs_plot_image","text":"Generate an image plot for the selected epoch collection.","title":"Plot image (epochs_plot_image)"},{"location":"user-guide/actions/#evoked-responses","text":"","title":"Evoked responses"},{"location":"user-guide/actions/#create-evoked-evoked_create","text":"Compute the average of selected epoch collections independently. Each collection is averaged separately, resulting in a distinct average curve for each.","title":"Create evoked (evoked_create)"},{"location":"user-guide/actions/#delete-evoked_delete","text":"Permanently remove the selected evoked response object from the current subject.","title":"Delete (evoked_delete)"},{"location":"user-guide/actions/#delete-from-all-evoked_delete_from_all","text":"Permanently remove the selected evoked response object from all matching subjects.","title":"Delete from all (evoked_delete_from_all)"},{"location":"user-guide/actions/#average-over-subjects-evoked_group_average","text":"Calculate the average of the selected evoked response object across subjects, with options to group subjects before averaging.","title":"Average over subjects (evoked_group_average)"},{"location":"user-guide/actions/#plot-evoked_plot","text":"Generate a plot for the selected evoked response object. The response may be visualized for all channels individually or as an average across specified channel groups.","title":"Plot (evoked_plot)"},{"location":"user-guide/actions/#plot-topomaps-evoked_plot_topomap","text":"Produce a series of topographical maps at specified time intervals for the selected evoked response object.","title":"Plot topomaps (evoked_plot_topomap)"},{"location":"user-guide/actions/#save-to-csv-evoked_save","text":"Export the numerical data from the evoked response object for all matching subjects into a CSV file.","title":"Save to csv (evoked_save)"},{"location":"user-guide/actions/#induced-responses-tfr","text":"","title":"Induced responses (TFR)"},{"location":"user-guide/actions/#create-tfr-tfr_create","text":"Calculate time-frequency representations (TFRs) for selected epoch collections independently, with each collection yielding a unique TFR.","title":"Create TFR (tfr_create)"},{"location":"user-guide/actions/#delete-tfr_delete","text":"Permanently remove the selected TFR object from the current subject.","title":"Delete (tfr_delete)"},{"location":"user-guide/actions/#delete-from-all-tfr_delete_from_all","text":"Permanently remove the selected TFR object from all matching subjects.","title":"Delete from all (tfr_delete_from_all)"},{"location":"user-guide/actions/#average-over-subjects-tfr_group_average","text":"Calculate the average of the selected TFR object across subjects, with options to group subjects before averaging.","title":"Average over subjects (tfr_group_average)"},{"location":"user-guide/actions/#plot-tfr-tfr_plot","text":"Visualize the selected TFR object as a heatmap, with options for individual channel visualization or averaging across channel groups.","title":"Plot TFR (tfr_plot)"},{"location":"user-guide/actions/#plot-tse-tfr_plot_tse","text":"Visualize the Temporal Spectral Evolution (TSE) of the selected TFR object, collapsing the frequency dimension over a specified interval, for individual channels or averaged across channel groups.","title":"Plot TSE (tfr_plot_tse)"},{"location":"user-guide/actions/#save-tfr-to-csv-tfr_save","text":"Export the numerical data from the TFR object for all matching subjects into a CSV file.","title":"Save TFR to csv (tfr_save)"},{"location":"user-guide/actions/#save-tse-to-csv-tfr_save_tse","text":"Export the TSE data from the TFR object, collapsing the frequency dimension over a specified interval, into a CSV file for all matching subjects.","title":"Save TSE to csv (tfr_save_tse)"},{"location":"user-guide/experiments/","text":"Experiments in Meggie \u00b6 This section provides a straightforward overview of Meggie's layout and the steps for starting and managing experiments with subjects. Layout Overview \u00b6 Meggie's interface is organized into two main columns: Left Column: This area is your control panel for the experiment. Here, you add new subjects to your experiment and adjust settings like channel groups. It's the organizational hub for your data. Right Column: This column contains the analysis tools, referred to as actions, which you'll apply to your data. These tools are arranged in tabs and are used to process the data step by step. Starting an Experiment \u00b6 Begin by creating an experiment where you'll enter basic information such as the experiment's name and the person conducting it. You'll also choose a pipeline that fits your research needs. This helps keep the interface focused and guides you through the necessary steps. A folder for the experiment will be created to store all related files. Adding Subjects \u00b6 After setting up your experiment, you can add subjects, which are your individual recordings, using the \"Add new...\" option in the left column. Applying Actions \u00b6 In the right column, you'll find the actions you can apply to your data. These actions are designed to be used on all your subjects at once, making it efficient to process multiple datasets. Preprocessing \u00b6 Meggie includes basic preprocessing features to improve the quality of your data. You can remove unwanted noise and apply filters to clean up the signals before further analysis. Working with EEG and MEG Data \u00b6 Meggie is equipped to handle both EEG and MEG data. For EEG, it offers tools to add sensor locations and adjust channel references when necessary. Managing Events \u00b6 Events, which are significant points in your recordings, can be managed within Meggie. This ensures you have control over important data points for analysis. Progressing Through Analysis \u00b6 The goal is to transform raw recordings into data that can inform your research. You'll use actions to move through analysis stages, each tailored to bring out specific features of your data.","title":"Experiments"},{"location":"user-guide/experiments/#experiments-in-meggie","text":"This section provides a straightforward overview of Meggie's layout and the steps for starting and managing experiments with subjects.","title":"Experiments in Meggie"},{"location":"user-guide/experiments/#layout-overview","text":"Meggie's interface is organized into two main columns: Left Column: This area is your control panel for the experiment. Here, you add new subjects to your experiment and adjust settings like channel groups. It's the organizational hub for your data. Right Column: This column contains the analysis tools, referred to as actions, which you'll apply to your data. These tools are arranged in tabs and are used to process the data step by step.","title":"Layout Overview"},{"location":"user-guide/experiments/#starting-an-experiment","text":"Begin by creating an experiment where you'll enter basic information such as the experiment's name and the person conducting it. You'll also choose a pipeline that fits your research needs. This helps keep the interface focused and guides you through the necessary steps. A folder for the experiment will be created to store all related files.","title":"Starting an Experiment"},{"location":"user-guide/experiments/#adding-subjects","text":"After setting up your experiment, you can add subjects, which are your individual recordings, using the \"Add new...\" option in the left column.","title":"Adding Subjects"},{"location":"user-guide/experiments/#applying-actions","text":"In the right column, you'll find the actions you can apply to your data. These actions are designed to be used on all your subjects at once, making it efficient to process multiple datasets.","title":"Applying Actions"},{"location":"user-guide/experiments/#preprocessing","text":"Meggie includes basic preprocessing features to improve the quality of your data. You can remove unwanted noise and apply filters to clean up the signals before further analysis.","title":"Preprocessing"},{"location":"user-guide/experiments/#working-with-eeg-and-meg-data","text":"Meggie is equipped to handle both EEG and MEG data. For EEG, it offers tools to add sensor locations and adjust channel references when necessary.","title":"Working with EEG and MEG Data"},{"location":"user-guide/experiments/#managing-events","text":"Events, which are significant points in your recordings, can be managed within Meggie. This ensures you have control over important data points for analysis.","title":"Managing Events"},{"location":"user-guide/experiments/#progressing-through-analysis","text":"The goal is to transform raw recordings into data that can inform your research. You'll use actions to move through analysis stages, each tailored to bring out specific features of your data.","title":"Progressing Through Analysis"},{"location":"user-guide/getting-started/","text":"Installation \u00b6 Meggie does not have standalone installers, but it can be easily installed on Windows, macOS, or Linux systems with Python 3.9 or higher using either of the following methods: Using conda \u00b6 Install meggie to a conda environment: $ conda create -n meggie-env -c conda-forge meggie==1.6.3 Using pip: \u00b6 Create a virtual environment folder: $ python -m venv meggie-env Activate the environment: $ source meggie-env/bin/activate Install dependencies: $ pip install -r https://raw.githubusercontent.com/cibr-jyu/meggie/v1.6.3/requirements.txt Install meggie: pip install meggie==1.6.3 Starting meggie for the first time \u00b6 Activate the environment in which Meggie was installed. For conda: conda activate meggie-env Or, for pip: source meggie-env/bin/activate Then run Meggie: $ meggie","title":"Getting Started"},{"location":"user-guide/getting-started/#installation","text":"Meggie does not have standalone installers, but it can be easily installed on Windows, macOS, or Linux systems with Python 3.9 or higher using either of the following methods:","title":"Installation"},{"location":"user-guide/getting-started/#using-conda","text":"Install meggie to a conda environment: $ conda create -n meggie-env -c conda-forge meggie==1.6.3","title":"Using conda"},{"location":"user-guide/getting-started/#using-pip","text":"Create a virtual environment folder: $ python -m venv meggie-env Activate the environment: $ source meggie-env/bin/activate Install dependencies: $ pip install -r https://raw.githubusercontent.com/cibr-jyu/meggie/v1.6.3/requirements.txt Install meggie: pip install meggie==1.6.3","title":"Using pip:"},{"location":"user-guide/getting-started/#starting-meggie-for-the-first-time","text":"Activate the environment in which Meggie was installed. For conda: conda activate meggie-env Or, for pip: source meggie-env/bin/activate Then run Meggie: $ meggie","title":"Starting meggie for the first time"}]} \ No newline at end of file diff --git a/search/worker.js b/search/worker.js new file mode 100644 index 00000000..8628dbce --- /dev/null +++ b/search/worker.js @@ -0,0 +1,133 @@ +var base_path = 'function' === typeof importScripts ? '.' : '/search/'; +var allowSearch = false; +var index; +var documents = {}; +var lang = ['en']; +var data; + +function getScript(script, callback) { + console.log('Loading script: ' + script); + $.getScript(base_path + script).done(function () { + callback(); + }).fail(function (jqxhr, settings, exception) { + console.log('Error: ' + exception); + }); +} + +function getScriptsInOrder(scripts, callback) { + if (scripts.length === 0) { + callback(); + return; + } + getScript(scripts[0], function() { + getScriptsInOrder(scripts.slice(1), callback); + }); +} + +function loadScripts(urls, callback) { + if( 'function' === typeof importScripts ) { + importScripts.apply(null, urls); + callback(); + } else { + getScriptsInOrder(urls, callback); + } +} + +function onJSONLoaded () { + data = JSON.parse(this.responseText); + var scriptsToLoad = ['lunr.js']; + if (data.config && data.config.lang && data.config.lang.length) { + lang = data.config.lang; + } + if (lang.length > 1 || lang[0] !== "en") { + scriptsToLoad.push('lunr.stemmer.support.js'); + if (lang.length > 1) { + scriptsToLoad.push('lunr.multi.js'); + } + if (lang.includes("ja") || lang.includes("jp")) { + scriptsToLoad.push('tinyseg.js'); + } + for (var i=0; i < lang.length; i++) { + if (lang[i] != 'en') { + scriptsToLoad.push(['lunr', lang[i], 'js'].join('.')); + } + } + } + loadScripts(scriptsToLoad, onScriptsLoaded); +} + +function onScriptsLoaded () { + console.log('All search scripts loaded, building Lunr index...'); + if (data.config && data.config.separator && data.config.separator.length) { + lunr.tokenizer.separator = new RegExp(data.config.separator); + } + + if (data.index) { + index = lunr.Index.load(data.index); + data.docs.forEach(function (doc) { + documents[doc.location] = doc; + }); + console.log('Lunr pre-built index loaded, search ready'); + } else { + index = lunr(function () { + if (lang.length === 1 && lang[0] !== "en" && lunr[lang[0]]) { + this.use(lunr[lang[0]]); + } else if (lang.length > 1) { + this.use(lunr.multiLanguage.apply(null, lang)); // spread operator not supported in all browsers: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator#Browser_compatibility + } + this.field('title'); + this.field('text'); + this.ref('location'); + + for (var i=0; i < data.docs.length; i++) { + var doc = data.docs[i]; + this.add(doc); + documents[doc.location] = doc; + } + }); + console.log('Lunr index built, search ready'); + } + allowSearch = true; + postMessage({config: data.config}); + postMessage({allowSearch: allowSearch}); +} + +function init () { + var oReq = new XMLHttpRequest(); + oReq.addEventListener("load", onJSONLoaded); + var index_path = base_path + '/search_index.json'; + if( 'function' === typeof importScripts ){ + index_path = 'search_index.json'; + } + oReq.open("GET", index_path); + oReq.send(); +} + +function search (query) { + if (!allowSearch) { + console.error('Assets for search still loading'); + return; + } + + var resultDocuments = []; + var results = index.search(query); + for (var i=0; i < results.length; i++){ + var result = results[i]; + doc = documents[result.ref]; + doc.summary = doc.text.substring(0, 200); + resultDocuments.push(doc); + } + return resultDocuments; +} + +if( 'function' === typeof importScripts ) { + onmessage = function (e) { + if (e.data.init) { + init(); + } else if (e.data.query) { + postMessage({ results: search(e.data.query) }); + } else { + console.error("Worker - Unrecognized message: " + e); + } + }; +} diff --git a/sitemap.xml b/sitemap.xml new file mode 100644 index 00000000..d7ecda5a --- /dev/null +++ b/sitemap.xml @@ -0,0 +1,38 @@ + + + + https://cibr-jyu.github.io/meggie/ + 2024-03-04 + daily + + + https://cibr-jyu.github.io/meggie/about/ + 2024-03-04 + daily + + + https://cibr-jyu.github.io/meggie/developer-guide/architecture/ + 2024-03-04 + daily + + + https://cibr-jyu.github.io/meggie/developer-guide/development/ + 2024-03-04 + daily + + + https://cibr-jyu.github.io/meggie/user-guide/actions/ + 2024-03-04 + daily + + + https://cibr-jyu.github.io/meggie/user-guide/experiments/ + 2024-03-04 + daily + + + https://cibr-jyu.github.io/meggie/user-guide/getting-started/ + 2024-03-04 + daily + + \ No newline at end of file diff --git a/sitemap.xml.gz b/sitemap.xml.gz new file mode 100644 index 00000000..c1561df7 Binary files /dev/null and b/sitemap.xml.gz differ diff --git a/user-guide/actions/index.html b/user-guide/actions/index.html new file mode 100644 index 00000000..0e58927a --- /dev/null +++ b/user-guide/actions/index.html @@ -0,0 +1,307 @@ + + + + + + + + Actions - Meggie + + + + + + + + + + + + + +
+ + +
+ +
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Actions

+

Actions serve as the primary analytical tools within Meggie. Upon establishing an experiment and incorporating the raw data files for each subject, these actions are systematically employed to progressively convert the raw magnetic or electric signals into meaningful behavioral outcomes. Below is a catalog of the available actions along with their respective descriptions.

+

Preprocessing

+

Events from annotations (raw_events_from_annotations)

+

Create events from annotations for further analysis.

+

Filter (raw_filter)

+

Apply low-pass, high-pass, band-pass, and band-stop filters to raw data to isolate specific frequency ranges or remove unwanted frequencies.

+

Artifact removal (raw_ica)

+

Apply Independent Component Analysis (ICA) to raw data to identify and remove artifacts such as heartbeats and eye blinks.

+

Montage (raw_montage)

+

Apply a montage to the EEG dataset, enabling the creation of topographical plots.

+

Plot raw (raw_plot)

+

Produce a time series plot of the raw data.

+

Plot projections (raw_plot_projections)

+

Generate a plot to visualize the projection vectors contained within the raw data.

+

Rereference (raw_rereference)

+

Re-reference the raw data to an average reference, which can be computed from one or more selected channels or all channels.

+

Resample (raw_resample)

+

Adjust the dataset by resampling it to a different sampling frequency.

+

Continuous data

+

Create spectrum (spectrum_create)

+

Calculate the spectral data at specified time intervals for the current subject.

+

Delete (spectrum_delete)

+

Permanently remove the selected spectrum object from the current subject.

+

Delete from all (spectrum_delete_from_all)

+

Permanently remove the selected spectrum object from all matching subjects.

+

Average over subjects (spectrum_group_average)

+

Calculate the average of the selected spectrum object across subjects, with options to group subjects before averaging.

+

Plot (spectrum_plot)

+

Generate a plot for the selected spectrum object. The spectrum object may be visualized for all channels individually or as an average across specified channel groups.

+

Save to csv (spectrum_save)

+

Export the numerical data from the spectrum object for all matching subjects into a CSV file.

+

Epochs

+

Create epochs (epochs_create)

+

Create a new epoch collection for the current subject.

+

Delete (epochs_delete)

+

Permanently remove the selected epoch collection from the current subject.

+

Delete from all (epochs_delete_from_all)

+

Permanently remove the selected epoch collection from all matching subjects.

+

Plot (epochs_plot)

+

Generate a simple plot for the selected epoch collection.

+

Plot image (epochs_plot_image)

+

Generate an image plot for the selected epoch collection.

+

Evoked responses

+

Create evoked (evoked_create)

+

Compute the average of selected epoch collections independently. Each collection is averaged separately, resulting in a distinct average curve for each.

+

Delete (evoked_delete)

+

Permanently remove the selected evoked response object from the current subject.

+

Delete from all (evoked_delete_from_all)

+

Permanently remove the selected evoked response object from all matching subjects.

+

Average over subjects (evoked_group_average)

+

Calculate the average of the selected evoked response object across subjects, with options to group subjects before averaging.

+

Plot (evoked_plot)

+

Generate a plot for the selected evoked response object. The response may be visualized for all channels individually or as an average across specified channel groups.

+

Plot topomaps (evoked_plot_topomap)

+

Produce a series of topographical maps at specified time intervals for the selected evoked response object.

+

Save to csv (evoked_save)

+

Export the numerical data from the evoked response object for all matching subjects into a CSV file.

+

Induced responses (TFR)

+

Create TFR (tfr_create)

+

Calculate time-frequency representations (TFRs) for selected epoch collections independently, with each collection yielding a unique TFR.

+

Delete (tfr_delete)

+

Permanently remove the selected TFR object from the current subject.

+

Delete from all (tfr_delete_from_all)

+

Permanently remove the selected TFR object from all matching subjects.

+

Average over subjects (tfr_group_average)

+

Calculate the average of the selected TFR object across subjects, with options to group subjects before averaging.

+

Plot TFR (tfr_plot)

+

Visualize the selected TFR object as a heatmap, with options for individual channel visualization or averaging across channel groups.

+

Plot TSE (tfr_plot_tse)

+

Visualize the Temporal Spectral Evolution (TSE) of the selected TFR object, collapsing the frequency dimension over a specified interval, for individual channels or averaged across channel groups.

+

Save TFR to csv (tfr_save)

+

Export the numerical data from the TFR object for all matching subjects into a CSV file.

+

Save TSE to csv (tfr_save_tse)

+

Export the TSE data from the TFR object, collapsing the frequency dimension over a specified interval, into a CSV file for all matching subjects.

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + « Previous + + + Next » + + +
+ + + + + + + + + diff --git a/user-guide/experiments/index.html b/user-guide/experiments/index.html new file mode 100644 index 00000000..0f3f7020 --- /dev/null +++ b/user-guide/experiments/index.html @@ -0,0 +1,186 @@ + + + + + + + + Experiments - Meggie + + + + + + + + + + + + + +
+ + +
+ +
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Experiments in Meggie

+

This section provides a straightforward overview of Meggie's layout and the steps for starting and managing experiments with subjects.

+

Layout Overview

+

Meggie's interface is organized into two main columns:

+
    +
  • +

    Left Column: This area is your control panel for the experiment. Here, you add new subjects to your experiment and adjust settings like channel groups. It's the organizational hub for your data.

    +
  • +
  • +

    Right Column: This column contains the analysis tools, referred to as actions, which you'll apply to your data. These tools are arranged in tabs and are used to process the data step by step.

    +
  • +
+

Starting an Experiment

+

Begin by creating an experiment where you'll enter basic information such as the experiment's name and the person conducting it. You'll also choose a pipeline that fits your research needs. This helps keep the interface focused and guides you through the necessary steps. A folder for the experiment will be created to store all related files.

+

Adding Subjects

+

After setting up your experiment, you can add subjects, which are your individual recordings, using the "Add new..." option in the left column.

+

Applying Actions

+

In the right column, you'll find the actions you can apply to your data. These actions are designed to be used on all your subjects at once, making it efficient to process multiple datasets.

+

Preprocessing

+

Meggie includes basic preprocessing features to improve the quality of your data. You can remove unwanted noise and apply filters to clean up the signals before further analysis.

+

Working with EEG and MEG Data

+

Meggie is equipped to handle both EEG and MEG data. For EEG, it offers tools to add sensor locations and adjust channel references when necessary.

+

Managing Events

+

Events, which are significant points in your recordings, can be managed within Meggie. This ensures you have control over important data points for analysis.

+

Progressing Through Analysis

+

The goal is to transform raw recordings into data that can inform your research. You'll use actions to move through analysis stages, each tailored to bring out specific features of your data.

+ +
+
+ +
+
+ +
+ +
+ +
+ + + + « Previous + + + Next » + + +
+ + + + + + + + + diff --git a/user-guide/getting-started/index.html b/user-guide/getting-started/index.html new file mode 100644 index 00000000..2d6ceafa --- /dev/null +++ b/user-guide/getting-started/index.html @@ -0,0 +1,186 @@ + + + + + + + + Getting Started - Meggie + + + + + + + + + + + + + +
+ + +
+ +
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Installation

+

Meggie does not have standalone installers, but it can be easily installed on Windows, macOS, or Linux systems with Python 3.9 or higher using either of the following methods:

+

Using conda

+

Install meggie to a conda environment:

+
$ conda create -n meggie-env -c conda-forge meggie==1.6.3
+
+ +

Using pip:

+

Create a virtual environment folder:

+
$ python -m venv meggie-env
+
+ +

Activate the environment:

+
$ source meggie-env/bin/activate
+
+ +

Install dependencies:

+
$ pip install -r https://raw.githubusercontent.com/cibr-jyu/meggie/v1.6.3/requirements.txt
+
+ +

Install meggie:

+
pip install meggie==1.6.3
+
+ +

Starting meggie for the first time

+

Activate the environment in which Meggie was installed. For conda:

+
conda activate meggie-env
+
+ +

Or, for pip:

+
source meggie-env/bin/activate
+
+ +

Then run Meggie:

+
$ meggie
+
+ +
+
+ +
+
+ +
+ +
+ +
+ + + + « Previous + + + Next » + + +
+ + + + + + + + +