-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathconvert_pytorch2onnx2tfpb.py
143 lines (114 loc) · 4.76 KB
/
convert_pytorch2onnx2tfpb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 22 15:18:10 2018
@author: [email protected]
"""
import os
import random
import shutil
import numpy as np
from PIL import Image
# model
from diymodel import DIY_Model
# onnx - step 1
from torch.autograd import Variable
import torch.onnx
# onnx - step 2
import onnx
from onnx_tf.backend import prepare
#
import tensorflow as tf
mlmc_tree = {
'length': {'c5_changku': 4, 'c2_5fenku': 1, 'c1_duanku': 0, 'c3_7fenku': 2, 'c4_9fenku': 3},
'style': {'F5_Denglong': 4, 'F7_Kuotui': 6, 'LT_Lianti': 9, 'F3_Zhitong': 2, 'LT_Beidai': 8, 'F4_Kuansong': 3, 'F2_Xiaojiao': 1, 'F8_Laba': 7, 'F6_Halun': 5, 'F1_JinshenQianbi': 0}}
#INFO: = mlmcdataloader.label_to_idx = {'length': 0, 'style': 1}
class_numbers = []
for key in sorted(mlmc_tree.keys()):
class_numbers.append(len(mlmc_tree[key]))
print('------- = {}'.format(class_numbers))
def get_label_idx(label):
idx = 0
for key in mlmc_tree.keys():
if label in mlmc_tree[key].keys():
return idx
idx += 1
return None
# usage: is_allowed_extension(filename, IMG_EXTENSIONS)
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']
extensions = IMG_EXTENSIONS
def is_allowed_extension(filename, extensions):
filename_lower = filename.lower()
return any([filename_lower.endswith(ext) for ext in extensions])
def get_filelist(path):
filelist = []
for root,dirs,filenames in os.walk(path):
for fn in filenames:
this_path = os.path.join(root,fn)
filelist.append(this_path)
return filelist
# usage: mkdir_if_not_exist([root, dir])
def mkdir_if_not_exist(path):
if not os.path.exists(os.path.join(*path)):
os.makedirs(os.path.join(*path))
def get_dict_key(dict, value):
for k in dict.keys():
if dict[k] == value:
return k
return None
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
if __name__ == '__main__':
# pipeline: pytorch model --> onnx modle --> tensorflow graph pb.
# step 1, load pytorch model and export onnx during running.
modelname = 'resnet18'
weightfile = 'models/model_best_checkpoint_resnet18.pth.tar'
modelhandle = DIY_Model(modelname, weightfile, class_numbers)
model = modelhandle.model
#model.eval() # useless
dummy_input = Variable(torch.randn(1, 3, 224, 224)) # nchw
onnx_filename = os.path.split(weightfile)[-1] + ".onnx"
torch.onnx.export(model, dummy_input,
onnx_filename,
verbose=True)
# step 2, create onnx_model using tensorflow as backend. check if right and export graph.
onnx_model = onnx.load(onnx_filename)
tf_rep = prepare(onnx_model, strict=False)
# install onnx-tensorflow from github,and tf_rep = prepare(onnx_model, strict=False)
# Reference https://github.com/onnx/onnx-tensorflow/issues/167
#tf_rep = prepare(onnx_model) # whthout strict=False leads to KeyError: 'pyfunc_0'
image = Image.open('pants.jpg')
# debug, here using the same input to check onnx and tf.
output_pytorch, img_np = modelhandle.process(image)
print('output_pytorch = {}'.format(output_pytorch))
output_onnx_tf = tf_rep.run(img_np)
print('output_onnx_tf = {}'.format(output_onnx_tf))
# onnx --> tf.graph.pb
tf_pb_path = onnx_filename + '_graph.pb'
tf_rep.export_graph(tf_pb_path)
# step 3, check if tf.pb is right.
with tf.Graph().as_default():
graph_def = tf.GraphDef()
with open(tf_pb_path, "rb") as f:
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name="")
with tf.Session() as sess:
#init = tf.initialize_all_variables()
init = tf.global_variables_initializer()
#sess.run(init)
# print all ops, check input/output tensor name.
# uncomment it if you donnot know io tensor names.
'''
print('-------------ops---------------------')
op = sess.graph.get_operations()
for m in op:
print(m.values())
print('-------------ops done.---------------------')
'''
input_x = sess.graph.get_tensor_by_name("0:0") # input
outputs1 = sess.graph.get_tensor_by_name('add_1:0') # 5
outputs2 = sess.graph.get_tensor_by_name('add_3:0') # 10
output_tf_pb = sess.run([outputs1, outputs2], feed_dict={input_x:img_np})
#output_tf_pb = sess.run([outputs1, outputs2], feed_dict={input_x:np.random.randn(1, 3, 224, 224)})
print('output_tf_pb = {}'.format(output_tf_pb))