-
Notifications
You must be signed in to change notification settings - Fork 2
/
imagenet_pipeline_after_centering.py
116 lines (101 loc) · 3.76 KB
/
imagenet_pipeline_after_centering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import tensorflow as tf
def pipeline_definition(src_path: str):
'''Our proposed way to defined the preprocessing pipeline. It's converted to a tf.data.Dataset via pipeline.py
Check demo.py for the example usage.
Each step is a dict with the following keys:
* "name": str
* "type": str - either "op" or "source" (source does not have an input schema)
* "op": a function that transforms the data in form of "input_schema" to "output_schema"
* "input_schema": tf.TensorSpec - i.e., the type of the data
* "output_schema": tf.TensorSpec - i.e., the type of the data
:param src_path: str
:return: list(dict)
'''
return [
{
"name": "list files",
"type": "source",
"op": tf.data.Dataset.list_files([
src_path + "/*/*." + ext
for ext in ["jpeg", "bmp", "png", "JPEG"]]
, seed = 42
),
"output_schema": tf.TensorSpec([], tf.string)
},
{
"name": "read image",
"type": "op",
"op": tf.io.read_file,
"input_schema": tf.TensorSpec([], tf.string),
"output_schema": tf.TensorSpec([], tf.string)
},
{
"name": "decode image",
"type": "op",
"op": _decode_image,
"input_schema": tf.TensorSpec([], tf.string),
"output_schema": tf.TensorSpec([None, None, 3], tf.uint8)
},
{
"name": "resize image",
"type": "op",
"op": _minsize_scale,
"input_schema": tf.TensorSpec([None, None, 3], tf.uint8),
"output_schema": tf.TensorSpec([None, None, 3], tf.uint8)
},
{
"name": "center pixel values",
"type": "op",
"op": _center_pixel_values,
"input_schema": tf.TensorSpec([None, None, 3], tf.uint8),
"output_schema": tf.TensorSpec([None, None, 3], tf.float32)
},
{
"name": "apply greyscale",
"type": "op",
"op": tf.image.rgb_to_grayscale,
"input_schema": tf.TensorSpec([None, None, 3], tf.float32),
"output_schema": tf.TensorSpec([None, None, 1], tf.float32)
},
{
"name": "random crop",
"type": "op",
"op": _random_crop,
"input_schema": tf.TensorSpec([None, None, 1], tf.float32),
"output_schema": tf.TensorSpec([224, 224, 1], tf.float32)
},
]
def _decode_image(encoded):
return tf.io.decode_image(encoded, channels=3, expand_animations=False)
def _scale_and_crop(image):
# scale
shape = tf.shape(image)
h = shape[0]
w = shape[1]
scaler = tf.constant(256.0) / tf.cast(tf.math.reduce_min([h, w]), tf.float32)
new_h = tf.cast(tf.cast(h, tf.float32) * scaler, tf.int32)
new_w = tf.cast(tf.cast(w, tf.float32) * scaler, tf.int32)
image = tf.image.resize(image, [new_h, new_w])
# crop
image = tf.image.resize_with_crop_or_pad(image, 224, 224)
return image
def _minsize_scale(image, min_length=256):
# scale
shape = tf.shape(image)
h = shape[0]
w = shape[1]
scaler = tf.constant(min_length, tf.float32) / tf.cast(tf.math.reduce_min([h, w]), tf.float32)
new_h = tf.cast(tf.cast(h, tf.float32) * scaler, tf.int32)
new_w = tf.cast(tf.cast(w, tf.float32) * scaler, tf.int32)
image.set_shape([None, None, None])
image = tf.image.resize(image, [new_h, new_w])
# convert back to uint8
image = tf.cast(image, tf.uint8)
return image
def _random_crop(image, crop_shape=(224, 224, 1)):
return tf.image.random_crop(image, crop_shape)
def _center_pixel_values(image):
image = tf.cast(image, tf.float32)
image /= 127.5
image -= 1.0
return image