-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathvdcnn.py
314 lines (261 loc) · 10.4 KB
/
vdcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import tensorflow as tf
from tensorflow.keras import Model, layers
N_BLOCKS = {9: (1, 1, 1, 1),
17: (2, 2, 2, 2),
29: (5, 5, 2, 2),
49:(8, 8, 5, 3)}
class KMaxPooling(layers.Layer):
"""
K-max pooling layer that extracts the k-highest activations from a sequence (2nd dimension).
TensorFlow backend.
"""
def __init__(self,
k=None,
sorted=False):
super(KMaxPooling, self).__init__()
self.k = k
self.sorted = sorted
def compute_output_shape(self, input_shape):
return (input_shape[0], self.k, input_shape[2])
def call(self,
inputs):
if self.k is None:
k = int(tf.round(inputs.shape[1] / 2))
else:
k = self.k
# Swap last two dimensions since top_k will be applied along the last dimension
shifted_inputs = tf.transpose(inputs, [0, 2, 1])
# Extract top_k, returns two tensors [values, indices]
top_k = tf.nn.top_k(shifted_inputs, k=k, sorted=self.sorted)[0]
# return flattened output
return tf.transpose(top_k, [0, 2, 1])
class Pooling(layers.Layer):
"""Wrapper for different pooling operations.
Including maxpooling and k-maxpooling.
"""
def __init__(self,
pool_type='max',
name=None):
super(Pooling, self).__init__(name=name)
assert pool_type in ['max', 'k_max']
self.pool_type = pool_type
if pool_type == 'max':
self.pool = layers.MaxPooling1D(pool_size=3, strides=2, padding='same')
elif pool_type == 'k_max':
self.pool = KMaxPooling()
def call(self,
x):
return self.pool(x)
class ZeroPadding(layers.Layer):
def __init__(self,
values,
name=None):
super(ZeroPadding, self).__init__(name=name)
self.values = values
def call(self,
x):
x = tf.pad(x, [[0, 0], [0, 0], [self.values[0], self.values[1]]],
mode='CONSTANT', constant_values=0)
return x
class Conv1D_BN(layers.Layer):
"""A stack of conv 1x1 and BatchNorm.
"""
def __init__(self,
filters,
kernel_size=3,
strides=2,
padding='same',
use_bias=True,
name=None):
super(Conv1D_BN, self).__init__(name=name)
self.filters = filters
self.use_bias = use_bias
self.conv = layers.Conv1D(filters, kernel_size, strides=strides, padding=padding, use_bias=use_bias,
kernel_initializer='he_normal')
self.bn = layers.BatchNormalization()
def call(self,
x):
x = self.conv(x)
x = self.bn(x)
return x
class ConvBlock(layers.Layer):
"""Conv block with downsampling.
1x1 conv to increase dimensions.
"""
def __init__(self,
filters,
kernel_size=3,
use_bias=True,
shortcut=True,
pool_type=None,
proj_type=None,
name=None,
):
super(ConvBlock, self).__init__(name=name)
self.filters = filters
self.kernel_size = kernel_size
self.use_bias = use_bias
self.shortcut = shortcut
self.pool_type = pool_type
self.proj_type = proj_type
# Deal with downsample and pooling
assert pool_type in ['max', 'k_max', 'conv', None]
if pool_type is None:
strides = 1
self.pool = None
self.downsample = None
elif pool_type == 'conv':
strides = 2 # Convolutional pooling with stride 2
self.pool = None
if shortcut:
self.downsample = Conv1D_BN(filters, 3, strides=2, padding='same', use_bias=use_bias)
else:
strides = 1
self.pool = Pooling(pool_type)
if shortcut:
self.downsample = Conv1D_BN(filters, 3, strides=2, padding='same', use_bias=use_bias)
self.conv1 = layers.Conv1D(filters, kernel_size, strides=strides, padding='same', use_bias=use_bias,
kernel_initializer='he_normal')
self.bn1 = layers.BatchNormalization()
self.conv2 = layers.Conv1D(filters, kernel_size, strides=1, padding='same', use_bias=use_bias,
kernel_initializer='he_normal')
self.bn2 = layers.BatchNormalization()
assert proj_type in ['identity', 'conv', None]
if shortcut:
if proj_type == 'conv':
# 1x1 conv for projection
self.proj = Conv1D_BN(filters*2, 1, strides=1, padding='same', use_bias=use_bias)
elif proj_type == 'identity':
# Identity using zero padding
self.proj = ZeroPadding([int(filters // 2), filters - int(filters // 2)])
def call(self,
x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = tf.nn.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.pool is not None:
out = self.pool(out)
if self.shortcut:
if self.downsample is not None:
residual = self.downsample(residual)
out += residual
out = tf.nn.relu(out)
if self.proj_type is not None and self.shortcut:
out = self.proj(out)
return out
class VDCNN(Model):
"""Model codebase for VDCNN.
Args:
num_classes: No. classes for classification task.
depth: depth of VDCNN, one of [9, 17, 29, 49].
seqlen: Sequence length.
embed_dim: dim for character embeddings.
shortcut: Use skip connections.
pool_type: Pooling operations to be used, one of ['max', 'k_max', 'conv'].
proj_type: Operation to increase dim for dotted skip connection, one of ['identity', 'conv'].
use_bias: Use bias for all layers or not.
logits: If False, return softmax probs.
"""
def __init__(self,
num_classes,
depth=9,
vocab_size=69,
seqlen=None,
embed_dim=16,
shortcut=True,
pool_type='max',
proj_type='conv',
use_bias=True,
logits=True):
super(VDCNN, self).__init__()
self.num_classes = num_classes
self.depth = depth
self.vocab_size = vocab_size
self.seqlen = seqlen
self.embed_dim = embed_dim
self.shortcut = shortcut
self.pool_type = pool_type
self.proj_type = proj_type
self.use_bias = use_bias
self.logits = True
assert pool_type in ['max', 'k_max', 'conv']
assert proj_type in ['conv', 'identity']
self.n_blocks = N_BLOCKS[depth]
self.embed_char = layers.Embedding(vocab_size, embed_dim, input_length=seqlen)
self.conv = layers.Conv1D(64, 3, strides=1, padding='same', use_bias=use_bias,
kernel_initializer='he_normal')
# Convolutional Block 64
self.conv_block_64 = []
for _ in range(self.n_blocks[0] - 1):
self.conv_block_64.append(ConvBlock(64, 3, use_bias, shortcut))
self.conv_block_64.append(ConvBlock(64, 3, use_bias, shortcut, pool_type=pool_type, proj_type=proj_type))
# Convolutional Block 128
self.conv_block_128 = []
for _ in range(self.n_blocks[1] - 1):
self.conv_block_128.append(ConvBlock(128, 3, use_bias, shortcut))
self.conv_block_128.append(ConvBlock(128, 3, use_bias, shortcut, pool_type=pool_type, proj_type=proj_type))
# Convolutional Block 256
self.conv_block_256 = []
for _ in range(self.n_blocks[2] - 1):
self.conv_block_256.append(ConvBlock(256, 3, use_bias, shortcut))
self.conv_block_256.append(ConvBlock(256, 3, use_bias, shortcut, pool_type=pool_type, proj_type=proj_type))
# Convolutional Block 512
self.conv_block_512 = []
for _ in range(self.n_blocks[3] - 1):
self.conv_block_512.append(ConvBlock(512, 3, use_bias, shortcut))
self.conv_block_512.append(ConvBlock(512, 3, use_bias, shortcut, pool_type=None, proj_type=None))
self.k_maxpool = KMaxPooling(k=8)
self.flatten = layers.Flatten()
# Dense layers
self.fc1 = layers.Dense(2048, activation='relu')
self.fc2 = layers.Dense(2048, activation='relu')
self.out = layers.Dense(num_classes)
def call(self,
x):
x = self.embed_char(x)
#print('embed:', x.shape)
x = self.conv(x)
#print('conv:', x.shape)
for l in self.conv_block_64:
x = l(x)
#print('conv_block_64:', x.shape)
for l in self.conv_block_128:
x = l(x)
#print('conv_block_128:', x.shape)
for l in self.conv_block_256:
x = l(x)
#print('conv_block_256:', x.shape)
for l in self.conv_block_512:
x = l(x)
#print('conv_block_512:', x.shape)
x = self.k_maxpool(x)
#print('k_maxpool_8:', x.shape)
x = self.flatten(x)
#print('flatten:', x.shape)
x = self.fc1(x)
x = self.fc2(x)
out = self.out(x)
#print('out:', out.shape)
if self.logits:
return out
return tf.nn.softmax(out)
if __name__ == "__main__":
x = tf.zeros([4, 1014])
model = VDCNN(10, depth=9, shortcut=True, pool_type='max', proj_type='identity')
out = model(x)
model.summary()
print()
model = VDCNN(10, depth=17, shortcut=True, pool_type='k_max', proj_type='identity')
out = model(x)
model.summary()
print()
model = VDCNN(10, depth=29, shortcut=False, pool_type='max', proj_type='conv')
out = model(x)
model.summary()
print()
model = VDCNN(10, depth=49, shortcut=True, pool_type='conv', proj_type='conv')
out = model(x)
model.summary()