-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlinear_eval.py
403 lines (351 loc) · 18.9 KB
/
linear_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import torch
import sys
import numpy as np
import os
import yaml
import matplotlib.pyplot as plt
import torchvision
import argparse
from torch.utils.data import DataLoader
from models.resnet import ResNetSimCLR, ResNet18, ResNet34, ResNet50
import torchvision.transforms as transforms
import logging
from torchvision import datasets
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Using device:", device)
parser = argparse.ArgumentParser(description='PyTorch SimCLR')
parser.add_argument('-folder-name', metavar='DIR', default='test',
help='path to dataset')
parser.add_argument('--dataset', default='cifar10',
help='dataset name', choices=['stl10', 'cifar10', 'svhn', 'imagenet', 'cifar100'])
parser.add_argument('--dataset-test', default='cifar10',
help='dataset to run downstream task on', choices=['stl10', 'cifar10', 'svhn'])
parser.add_argument('--datasetsteal', default='cifar10',
help='dataset used for querying the victim', choices=['stl10', 'cifar10', 'svhn', 'imagenet', 'tinyimages'])
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet34',
choices=['resnet18', 'resnet34', 'resnet50'], help='model architecture')
parser.add_argument('-n', '--num-labeled', default=50000,type=int,
help='Number of labeled examples to train on')
parser.add_argument('--epochstrain', default=200, type=int, metavar='N',
help='number of epochs victim was trained with')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of epochs stolen model was trained with')
parser.add_argument('--num_queries', default=9000, type=int, metavar='N',
help='Number of queries to steal the model.')
parser.add_argument('--lr', default=1e-4, type=float, # maybe try other lrs
help='learning rate to train the model with.')
parser.add_argument('--modeltype', default='stolen', type=str,
help='Type of model to evaluate', choices=['victim', 'stolen', 'random'])
parser.add_argument('--save', default='False', type=str,
help='Save final model', choices=['True', 'False'])
parser.add_argument('--losstype', default='infonce', type=str,
help='Loss function to use.')
parser.add_argument('--head', default='False', type=str,
help='stolen model was trained using recreated head.', choices=['True', 'False'])
parser.add_argument('--sigma', default=0.5, type=float,
help='standard deviation used for perturbations')
parser.add_argument('--mu', default=5, type=float,
help='mean noise used for perturbations')
parser.add_argument('--clear', default='False', type=str,
help='Clear previous logs', choices=['True', 'False'])
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--retrain', action='store_true',
help='evaluating a retrained model (use modeltype=victim still)')
parser.add_argument('--array_id', type=int, default=0, help='slurm array id.')
parser.add_argument('--changeepochs', action='store_true',
help='use to adjust epochs based on array id instead of queries.')
args = parser.parse_args()
if args.retrain:
args.modeltype = "victim"
if args.changeepochs:
num_epochs = [5, 10, 25, 50]
args.epochstrain = num_epochs[args.array_id]
samples = 50000
else:
num_samples = [5000, 10000, 20000, 50000]
samples = num_samples[args.array_id]
pathpre = f"/scratch/ssd004/scratch/{os.getenv('USER')}/checkpoint"
datapath = f"/ssd003/home/{os.getenv('USER')}/data"
def load_victim(epochs, dataset, model, loss, device, retrain=False):
print("Loading victim model: ")
if retrain:
print("Evaluating retrained model")
checkpoint = torch.load(
f"{pathpre}/SimCLR/102resnet34infonceSTEAL/retrain{dataset}_checkpoint_{epochs}_{loss}_{samples}.pth.tar", map_location=device)
else:
checkpoint = torch.load(
f"{pathpre}/SimCLR/{epochs}{args.arch}{loss}TRAIN/{dataset}_checkpoint_{epochs}_{loss}.pth.tar",
map_location=device)
try:
state_dict = checkpoint['state_dict']
except:
state_dict = checkpoint
new_state_dict = {}
# Remove head.
for k in list(state_dict.keys()):
if k.startswith('backbone.'):
if k.startswith('backbone') and not k.startswith('backbone.fc'):
# remove prefix
new_state_dict[k[len("backbone."):]] = state_dict[k]
elif k.startswith('module.backbone.'):
if k.startswith('module.backbone') and not k.startswith('module.backbone.fc'):
# remove prefix
new_state_dict[k[len("module.backbone."):]] = state_dict[k]
else:
new_state_dict[k] = state_dict[k]
log = model.load_state_dict(new_state_dict, strict=False)
assert log.missing_keys == ['fc.weight', 'fc.bias']
return model
def load_stolen(epochs, loss, model, dataset, queries, device):
print("Loading stolen model: ")
checkpoint = torch.load(
f"{pathpre}/SimCLR/{epochs}{args.arch}{loss}STEAL/stolen_checkpoint_{queries}_{loss}_{dataset}.pth.tar",
map_location=device)
state_dict = checkpoint['state_dict']
new_state_dict = {}
# Remove head.
if loss == "symmetrized":
for k in list(state_dict.keys()):
if k.startswith('encoder.'):
if k.startswith('encoder') and not k.startswith('encoder.fc'):
# remove prefix
new_state_dict[k[len("encoder."):]] = state_dict[k]
else:
new_state_dict[k] = state_dict[k]
else:
for k in list(state_dict.keys()):
if k.startswith('backbone.'):
if k.startswith('backbone') and not k.startswith('backbone.fc'):
# remove prefix
new_state_dict[k[len("backbone."):]] = state_dict[k]
elif k.startswith('module.backbone.'):
if k.startswith('module.backbone') and not k.startswith(
'module.backbone.fc'):
# remove prefix
new_state_dict[k[len("module.backbone."):]] = state_dict[k]
else:
new_state_dict[k] = state_dict[k]
log = model.load_state_dict(new_state_dict, strict=False)
assert log.missing_keys == ['fc.weight', 'fc.bias']
return model
def load_victim_linear(epochs, loss, model, dataset, queries, datasetvic, device):
# load victim to compute fidelity accuracy
print("Loading victim model: ")
state_dict = torch.load(
f"{pathpre}/SimCLR/downstream/victim/{datasetvic}_down_{dataset}.pth.tar", # Add support for other victims
map_location=device)
log = model.load_state_dict(state_dict, strict=False)
#assert log.missing_keys == ['fc.weight', 'fc.bias']
return model
def load_random(model, device, args):
print(f"Loading {args.dataset} encoder as random model: ")
checkpoint = torch.load(
f"{pathpre}/SimCLR/{args.epochstrain}{args.arch}infonceTRAIN/{args.dataset}_checkpoint_{args.epochstrain}_infonce.pth.tar",
map_location=device)
state_dict = checkpoint['state_dict']
new_state_dict = {}
for k in list(state_dict.keys()):
if k.startswith('backbone.'):
if k.startswith('backbone') and not k.startswith('backbone.fc'):
# remove prefix
new_state_dict[k[len("backbone."):]] = state_dict[k]
elif k.startswith('module.backbone.'):
if k.startswith('module.backbone') and not k.startswith('module.backbone.fc'):
# remove prefix
new_state_dict[k[len("module.backbone."):]] = state_dict[k]
else:
new_state_dict[k] = state_dict[k]
log = model.load_state_dict(new_state_dict, strict=False)
assert log.missing_keys == ['fc.weight', 'fc.bias']
return model
def get_stl10_data_loaders(download, shuffle=False, batch_size=args.batch_size, dim=32):
train_dataset = datasets.STL10(f"{pathpre}/SimCLR/stl10", split='train', download=download,
transform=transforms.Compose([transforms.Resize(dim), transforms.ToTensor()]))
train_loader = DataLoader(train_dataset, batch_size=batch_size,
num_workers=0, drop_last=False, shuffle=shuffle)
test_dataset = datasets.STL10(f"{pathpre}/SimCLR/stl10", split='test', download=download,
transform=transforms.Compose([transforms.Resize(dim), transforms.ToTensor()]))
test_loader = DataLoader(test_dataset, batch_size=2*batch_size,
num_workers=2, drop_last=False, shuffle=shuffle)
return train_loader, test_loader
def get_cifar10_data_loaders(download, shuffle=False, batch_size=args.batch_size, dim=32):
train_dataset = datasets.CIFAR10(datapath, train=True, download=download,
transform=transforms.Compose([transforms.Resize(dim), transforms.ToTensor()]))
train_loader = DataLoader(train_dataset, batch_size=batch_size,
num_workers=0, drop_last=False, shuffle=shuffle)
test_dataset = datasets.CIFAR10(datapath, train=False, download=download,
transform=transforms.Compose([transforms.Resize(dim), transforms.ToTensor()]))
indxs = list(range(len(test_dataset) - 1000, len(test_dataset)))
test_dataset = torch.utils.data.Subset(test_dataset,
indxs) # only select last 1000 samples to prevent overlap with queried samples.
test_loader = DataLoader(test_dataset, batch_size=64,
num_workers=2, drop_last=False, shuffle=shuffle)
return train_loader, test_loader
def get_cifar100_data_loaders(download, shuffle=False, batch_size=args.batch_size, dim=32):
train_dataset = datasets.CIFAR100(datapath, train=True, download=download,
transform=transforms.Compose([transforms.Resize(dim), transforms.ToTensor()]))
train_loader = DataLoader(train_dataset, batch_size=batch_size,
num_workers=0, drop_last=False, shuffle=shuffle)
test_dataset = datasets.CIFAR100(datapath, train=False, download=download,
transform=transforms.Compose([transforms.Resize(dim), transforms.ToTensor()]))
test_loader = DataLoader(test_dataset, batch_size=64,
num_workers=2, drop_last=False, shuffle=shuffle)
return train_loader, test_loader
def get_svhn_data_loaders(download, shuffle=False, batch_size=args.batch_size):
train_dataset = datasets.SVHN(datapath + "/SVHN", split='train', download=download,
transform=transforms.ToTensor())
train_loader = DataLoader(train_dataset, batch_size=batch_size,
num_workers=0, drop_last=False, shuffle=shuffle)
test_dataset = datasets.SVHN(datapath + "/SVHN", split='test', download=download,
transform=transforms.ToTensor())
indxs = list(range(len(test_dataset) - 1000, len(test_dataset)))
test_dataset = torch.utils.data.Subset(test_dataset,
indxs) # only select last 1000 samples to prevent overlap with queried samples.
test_loader = DataLoader(test_dataset, batch_size=64,
num_workers=2, drop_last=False, shuffle=shuffle)
return train_loader, test_loader
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if args.modeltype == "stolen":
log_dir = f"{pathpre}/SimCLR/{args.epochs}{args.arch}{args.losstype}STEAL/" # save logs here.
logname = f'testing{args.modeltype}{args.dataset_test}{args.num_queries}.log'
else:
if args.dataset == "imagenet":
args.arch = "resnet50"
log_dir = f"{pathpre}/SimCLR/{args.epochstrain}{args.arch}{args.losstype}TRAIN/"
logname = f'testing{args.modeltype}{args.dataset_test}.log'
if args.retrain:
log_dir = f"{pathpre}/SimCLR/102resnet34infonceSTEAL/" # manually set
logname = f'testingretrained{args.dataset_test}{samples}_e{args.epochstrain}.log'
if args.clear == "True":
if os.path.exists(os.path.join(log_dir, logname)):
os.remove(os.path.join(log_dir, logname))
logging.basicConfig(
filename=os.path.join(log_dir, logname),
level=logging.DEBUG)
if args.arch == 'resnet18':
model = ResNet18(num_classes=10).to(device)
elif args.arch == 'resnet34':
model = ResNet34( num_classes=10).to(device)
elif args.arch == 'resnet50':
if args.dataset_test == "cifar100":
model = torchvision.models.resnet50(pretrained=False, num_classes=100).to(device)
else:
model = torchvision.models.resnet50(pretrained=False,
num_classes=10).to(device)
if args.modeltype == "victim":
model = load_victim(args.epochstrain, args.dataset, model, args.losstype,
device=device, retrain=args.retrain)
print("Evaluating victim")
elif args.modeltype == "random":
model = load_random(model,device=device, args=args)
print("Evaluating random model")
else:
model = load_stolen(args.epochs, args.losstype, model, args.datasetsteal, args.num_queries,
device=device)
print("Evaluating stolen model")
victim_linear = ResNet18(num_classes=10).to(device)
victim_linear = load_victim_linear(args.epochs, args.losstype, victim_linear, args.dataset_test, args.num_queries, args.dataset,
device=device)
if args.dataset_test == 'cifar10':
if args.arch == "resnet50":
train_loader, test_loader = get_cifar10_data_loaders(download=False, dim=224)
else:
train_loader, test_loader = get_cifar10_data_loaders(download=False)
elif args.dataset_test == 'cifar100':
if args.arch == "resnet50":
train_loader, test_loader = get_cifar100_data_loaders(download=False,
dim=224)
elif args.dataset_test == 'stl10':
if args.arch == "resnet50":
train_loader, test_loader = get_stl10_data_loaders(download=False,dim=224)
else:
train_loader, test_loader = get_stl10_data_loaders(download=False)
elif args.dataset_test == "svhn":
train_loader, test_loader = get_svhn_data_loaders(download=False)
# freeze all layers but the last fc (can try by training all layers)
for name, param in model.named_parameters():
if name not in ['fc.weight', 'fc.bias', 'fc.0.weight', 'fc.0.bias']: # the imagenet model has fc.0 for the last layer
param.requires_grad = False
parameters = list(filter(lambda p: p.requires_grad, model.parameters()))
assert len(parameters) == 2 # fc.weight, fc.bias
if args.modeltype == "victim":
optimizer = torch.optim.Adam(model.parameters(), lr=3e-4, weight_decay=0.0008)
criterion = torch.nn.CrossEntropyLoss().to(device)
else:
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr,
weight_decay=0.0008)
criterion = torch.nn.CrossEntropyLoss().to(device)
epochs = 100
## Trains the representation model with a linear classifier to measure the accuracy on the test set labels of the victim/stolen model
logging.info(f"Evaluating {args.modeltype} model on {args.dataset_test} dataset. Model trained using {args.losstype}.")
logging.info(f"Args: {args}")
for epoch in range(epochs):
top1_train_accuracy = 0
for counter, (x_batch, y_batch) in enumerate(train_loader):
x_batch = x_batch.to(device)
y_batch = y_batch.to(device)
logits = model(x_batch)
loss = criterion(logits, y_batch)
top1 = accuracy(logits, y_batch, topk=(1,))
top1_train_accuracy += top1[0]
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (counter+1) * x_batch.shape[0] >= args.num_labeled:
break
top1_train_accuracy /= (counter + 1)
top1_accuracy = 0
top5_accuracy = 0
fidelity_accuracy = 0
for counter, (x_batch, y_batch) in enumerate(test_loader):
x_batch = x_batch.to(device)
y_batch = y_batch.to(device)
logits = model(x_batch)
if args.modeltype == "stolen":
victim_logits = victim_linear(x_batch)
victim_targets = victim_logits.argmax(axis=1)
fid = accuracy(logits, victim_targets, topk=(1,))
fidelity_accuracy += fid[0]
top1, top5 = accuracy(logits, y_batch, topk=(1,5))
top1_accuracy += top1[0]
top5_accuracy += top5[0]
top1_accuracy /= (counter + 1)
top5_accuracy /= (counter + 1)
fidelity_accuracy /= (counter + 1)
if args.modeltype == "stolen":
print(f"Epoch {epoch}\tTop1 Train accuracy {top1_train_accuracy.item()}\tTop1 Test accuracy: {top1_accuracy.item()}\tTop5 test acc: {top5_accuracy.item()}\tFidelity: {fidelity_accuracy.item()}")
logging.debug(
f"Epoch {epoch}\tTop1 Train accuracy {top1_train_accuracy.item()}\tTop1 Test accuracy: {top1_accuracy.item()}\tTop5 test acc: {top5_accuracy.item()}\tFidelity: {fidelity_accuracy.item()}")
else:
print(
f"Epoch {epoch}\tTop1 Train accuracy {top1_train_accuracy.item()}\tTop1 Test accuracy: {top1_accuracy.item()}\tTop5 test acc: {top5_accuracy.item()}")
logging.debug(
f"Epoch {epoch}\tTop1 Train accuracy {top1_train_accuracy.item()}\tTop1 Test accuracy: {top1_accuracy.item()}\tTop5 test acc: {top5_accuracy.item()}")
if args.save == "True":
if args.modeltype == "stolen":
torch.save(model.state_dict(), f"{pathpre}/SimCLR/downstream/stolen/{args.dataset}enc/{args.datasetsteal}_down_{args.dataset_test}.pth.tar")
elif args.modeltype == "random":
if args.arch == "resnet50":
torch.save(model.state_dict(),
f"{pathpre}/SimCLR/downstream/random/{args.dataset}_down_{args.dataset_test}_r50.pth.tar")
else:
torch.save(model.state_dict(),
f"{pathpre}/SimCLR/downstream/random/{args.dataset}_down_{args.dataset_test}.pth.tar")
else:
torch.save(model.state_dict(), f"{pathpre}/SimCLR/downstream/victim/{args.dataset}_down_{args.dataset_test}.pth.tar")