-
Notifications
You must be signed in to change notification settings - Fork 4
/
loss.py
357 lines (288 loc) · 12.7 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# Implementations of other loss functions
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import sys
import numpy as np
import os
import matplotlib.pyplot as plt
import torchvision
import argparse
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import logging
from torchvision import datasets
# soft cross entropy
def soft_cross_entropy(pred, soft_targets, weights=None):
if weights is not None:
return torch.mean(
torch.sum(- soft_targets * F.log_softmax(pred, dim=1) * weights,
1))
else:
return torch.mean(
torch.sum(- soft_targets * F.log_softmax(pred, dim=1), 1))
# Wasserstein:
def torch_wasserstein_loss(tensor_a, tensor_b):
# Compute the first Wasserstein distance between two 1D distributions.
return (torch_cdf_loss(tensor_a, tensor_b, p=1))
def torch_energy_loss(tensor_a, tensor_b):
# Compute the energy distance between two 1D distributions.
return ((2 ** 0.5) * torch_cdf_loss(tensor_a, tensor_b, p=2))
def torch_cdf_loss(tensor_a, tensor_b, p=1):
# last-dimension is weight distribution
# p is the norm of the distance, p=1 --> First Wasserstein Distance
# to get a positive weight with our normalized distribution
# we recommend combining this loss with other difference-based losses like L1
# normalize distribution, add 1e-14 to divisor to avoid 0/0
tensor_a = tensor_a / (torch.sum(tensor_a, dim=-1, keepdim=True) + 1e-14)
tensor_b = tensor_b / (torch.sum(tensor_b, dim=-1, keepdim=True) + 1e-14)
# make cdf with cumsum
cdf_tensor_a = torch.cumsum(tensor_a, dim=-1)
cdf_tensor_b = torch.cumsum(tensor_b, dim=-1)
# choose different formulas for different norm situations
if p == 1:
cdf_distance = torch.sum(torch.abs((cdf_tensor_a - cdf_tensor_b)),
dim=-1)
elif p == 2:
cdf_distance = torch.sqrt(
torch.sum(torch.pow((cdf_tensor_a - cdf_tensor_b), 2), dim=-1))
else:
cdf_distance = torch.pow(
torch.sum(torch.pow(torch.abs(cdf_tensor_a - cdf_tensor_b), p),
dim=-1), 1 / p)
cdf_loss = cdf_distance.mean()
return cdf_loss
def torch_validate_distibution(tensor_a, tensor_b):
# Zero sized dimension is not supported by pytorch, we suppose there is no empty inputs
# Weights should be non-negetive, and with a positive and finite sum
# We suppose all conditions will be corrected by network training
# We only check the match of the size here
if tensor_a.size() != tensor_b.size():
raise ValueError("Input weight tensors must be of the same size")
class wasserstein_loss(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, tensor_a, tensor_b):
return torch_wasserstein_loss(tensor_a, tensor_b)
# https://lilianweng.github.io/lil-log/2021/05/31/contrastive-representation-learning.html#contrastive-training-objectives
# Soft nearest neighbours Loss:
# https://arxiv.org/pdf/1902.01889.pdf , https://twitter.com/nickfrosst/status/1093581702453231623
# https://github.com/tensorflow/similarity/tree/master/tensorflow_similarity/losses
# https://github.com/tensorflow/similarity/pull/203/commits/c7b5304be9c7df40297aa8382d28400ba94337c8#diff-6fb616049a9a9c0d7cc4dc686ec1746520039c9845fa7fbf9d291054b222ca18
# https://github.com/vimarshc/fastai_experiments/blob/master/Colab%20Notebooks/entanglement.ipynb
def build_masks(labels,
batch_size):
"""Build masks that allows to select only the positive or negatives
embeddings.
Args:
labels: 1D int `Tensor` that contains the class ids.
batch_size: size of the batch.
Returns:
Tuple of Tensors containing the positive_mask and negative_mask
"""
if np.ndim(labels) == 1:
labels = torch.reshape(labels, (-1, 1))
# same class mask
positive_mask = (labels == labels.T).to(torch.bool)
# not the same class
negative_mask = torch.logical_not(positive_mask)
# we need to remove the diagonal from positive mask
diag = torch.logical_not(
torch.diag(torch.ones(batch_size, dtype=torch.bool)))
positive_mask = torch.logical_and(positive_mask, diag)
return positive_mask, negative_mask
def pairwise_euclid_distance(a, b):
STABILITY_EPS = 0.00001
a = a.double()
b = b.double()
batch_a = a.shape[0]
batch_b = b.shape[0]
sqr_norm_a = torch.pow(a, 2).sum(dim=1).view(1,
batch_a) + STABILITY_EPS
sqr_norm_b = torch.pow(b, 2).sum(dim=1).view(batch_b,
1) + STABILITY_EPS
tile_1 = sqr_norm_a.repeat([batch_a, 1])
tile_2 = sqr_norm_b.repeat([1, batch_b])
inner_prod = torch.matmul(b, a.T) + STABILITY_EPS
dist = tile_1 + tile_2 - 2 * inner_prod
return dist
def soft_nn_loss(args,
features,
distance,
temperature=10000):
"""Computes the soft nearest neighbors loss.
Args:
labels: Labels associated with features. (now calculated in code below)
features: Embedded examples.
temperature: Controls relative importance given
to the pair of points.
Returns:
loss: loss value for the current batch.
"""
batch_size = features.size()[0]
n = int(features.size()[0] / args.batch_size)
labels = torch.cat(
[torch.arange(args.batch_size) for i in range(n)], dim=0)
# labels = (labels.unsqueeze(0) == labels.unsqueeze(1)).float()
eps = 1e-9
pairwise_dist = distance(features, features)
pairwise_dist = pairwise_dist / temperature
negexpd = torch.exp(-pairwise_dist)
# Mask out diagonal entries
diag = torch.diag(torch.ones(batch_size, dtype=torch.bool))
diag_mask = torch.logical_not(diag).float().to(args.device)
negexpd = torch.mul(negexpd, diag_mask)
# creating mask to sample same class neighboorhood
pos_mask, _ = build_masks(labels, batch_size)
pos_mask = pos_mask.type(torch.FloatTensor)
pos_mask = pos_mask.to(args.device)
# all class neighborhood
alcn = torch.sum(negexpd, dim=1)
# same class neighborhood
sacn = torch.sum(torch.mul(negexpd, pos_mask), dim=1)
# exclude examples with unique class from loss calculation
excl = torch.not_equal(torch.sum(pos_mask, dim=1),
torch.zeros(batch_size).to(args.device))
excl = excl.type(torch.FloatTensor).to(args.device)
loss = torch.divide(sacn, alcn)
loss = torch.multiply(torch.log(eps + loss), excl)
loss = -torch.mean(loss)
return loss
# Supervised contrastive learning
# https://arxiv.org/pdf/2004.11362.pdf
# https://github.com/HobbitLong/SupContrast/blob/master/losses.py
# https://github.com/HobbitLong/SupContrast/blob/master/main_supcon.py
class SupConLoss(nn.Module):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
It also supports the unsupervised contrastive loss in SimCLR"""
def __init__(self, temperature=0.07, contrast_mode='all',
base_temperature=0.07):
super(SupConLoss, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
def forward(self, features, labels=None, mask=None):
"""Compute loss for model. If both `labels` and `mask` are None,
it degenerates to SimCLR unsupervised loss:
https://arxiv.org/pdf/2002.05709.pdf
Args:
features: hidden vector of shape [bsz, n_views, ...].
labels: ground truth of shape [bsz].
mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j
has the same class as sample i. Can be asymmetric.
Returns:
A loss scalar.
"""
device = (torch.device('cuda')
if features.is_cuda
else torch.device('cpu'))
if len(features.shape) < 3:
raise ValueError('`features` needs to be [bsz, n_views, ...],'
'at least 3 dimensions are required')
if len(features.shape) > 3:
features = features.view(features.shape[0], features.shape[1], -1)
batch_size = features.shape[0]
if labels is not None and mask is not None:
raise ValueError('Cannot define both `labels` and `mask`')
elif labels is None and mask is None:
mask = torch.eye(batch_size, dtype=torch.float32).to(device)
elif labels is not None:
labels = labels.contiguous().view(-1, 1)
if labels.shape[0] != batch_size:
raise ValueError('Num of labels does not match num of features')
mask = torch.eq(labels, labels.T).float().to(device)
else:
mask = mask.float().to(device)
contrast_count = features.shape[1]
contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0)
if self.contrast_mode == 'one':
anchor_feature = features[:, 0]
anchor_count = 1
elif self.contrast_mode == 'all':
anchor_feature = contrast_feature
anchor_count = contrast_count
else:
raise ValueError('Unknown mode: {}'.format(self.contrast_mode))
# compute logits
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T),
self.temperature)
# for numerical stability
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
# tile mask
mask = mask.repeat(anchor_count, contrast_count)
# mask-out self-contrast cases
logits_mask = torch.scatter(
torch.ones_like(mask),
1,
torch.arange(batch_size * anchor_count).view(-1, 1).to(device),
0
)
mask = mask * logits_mask
# compute log_prob
exp_logits = torch.exp(logits) * logits_mask
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
# compute mean of log-likelihood over positive
mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1)
# loss
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
loss = loss.view(anchor_count, batch_size).mean()
return loss
def neg_cosine(p, z): # negative cosine similarity
z = z.detach() # stop gradient
p = F.normalize(p, dim=1) # l2-normalize
z = F.normalize(z, dim=1) # l2-normalize
return -(p * z).sum(dim=1).mean()
def regression_loss(p, z):
p = F.normalize(p, dim=1)
z = F.normalize(z, dim=1)
return 2 - 2 * (p * z).sum(dim=-1)
# Barlow Twins https://arxiv.org/pdf/2103.03230.pdf
def off_diagonal(x):
# return a flattened view of the off-diagonal elements of a square matrix
n, m = x.shape
assert n == m
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
class BarlowTwins(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.backbone = torchvision.models.resnet18(zero_init_residual=True)
self.backbone.fc = nn.Identity()
# projector
sizes = [512] + [512] # list(map(int, args.projector.split('-')))
layers = []
for i in range(len(sizes) - 2):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=False))
layers.append(nn.BatchNorm1d(sizes[i + 1]))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Linear(sizes[-2], sizes[-1], bias=False))
self.projector = nn.Sequential(*layers)
# normalization layer for the representations z1 and z2
self.bn = nn.BatchNorm1d(sizes[-1], affine=False)
def forward(self, y1, y2):
z1 = self.projector(self.backbone(y1))
z2 = self.projector(self.backbone(y2))
# empirical cross-correlation matrix
c = self.bn(z1).T @ self.bn(z2)
# sum the cross-correlation matrix between all gpus
c.div_(self.args.batch_size)
torch.distributed.all_reduce(c)
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
off_diag = off_diagonal(c).pow_(2).sum()
loss = on_diag + 0.0051 * off_diag
return loss
def barlow_loss(z1, z2, device):
# z1, z2 are projections of two augmentations
bn = nn.BatchNorm1d(z1.shape[1], affine=False).to(device)
# empirical cross-correlation matrix
c = bn(z1).T @ bn(z2)
batch_size = z1.shape[0]
# sum the cross-correlation matrix between all gpus
c.div_(batch_size)
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
off_diag = off_diagonal(c).pow_(2).sum()
loss = on_diag + 0.0051 * off_diag
return loss