-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerator_utils.py
70 lines (58 loc) · 2.46 KB
/
generator_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
def test_loss_function(recon_x, x, mu, logvar, variational_beta=.000005):
reconstruction_function = nn.BCELoss()
reconstruction_function.size_average = False
BCE = reconstruction_function(recon_x, x)
# https://arxiv.org/abs/1312.6114 (Appendix B)
# 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
KLD = torch.sum(KLD_element).mul_(-0.5)
return BCE + variational_beta * KLD
def vae_loss(recon_x, x, mu, logvar, variational_beta=1):
# recon_x is the probability of a multivariate Bernoulli distribution p.
# -log(p(x)) is then the pixel-wise binary cross-entropy.
# NOTE if ever get problems here, check that inputs are between 0 and 1
recon_loss = F.binary_cross_entropy(recon_x.view(-1, 784), x.view(-1, 784), reduction='sum')
# print(recon_loss)
kldivergence = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
# print(kldivergence)
return recon_loss + variational_beta * kldivergence
def mse_loss_function(recons, input, mu, log_var, variational_beta=0.00025):
""" For Celeba
Computes the VAE loss function.
KL(N(\mu, \sigma), N(0, 1)) = \log \frac{1}{\sigma} + \frac{\sigma^2 + \mu^2}{2} - \frac{1}{2}
:param args:
:param kwargs:
:return:
"""
recons_loss = F.mse_loss(recons, input, reduction="mean")
kld_loss = torch.mean(-0.5 * torch.sum(1 + log_var - mu ** 2 - log_var.exp(), dim = 1), dim = 0)
loss = recons_loss + variational_beta * kld_loss
return loss # {'loss': loss, 'Reconstruction_Loss':recons_loss.detach(), 'KLD':-kld_loss.detach()}
def bce_loss_function(recons, input, mu, log_var, variational_beta=1):
# For SVHN
recons = torch.clamp(recons, min=0, max=1)
input = torch.clamp(input, min=0, max=1)
CE = F.mse_loss(recons, input, reduction="sum")
var_x = log_var.exp()
log_var = torch.clip(log_var, min=-100, max=100)
KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - var_x) # log_var.exp()
loss = CE + variational_beta * KLD
return loss
def to_img(x):
x = x.clamp(0, 1)
return x
def save_image(img, path):
img = to_img(img)
npimg = img.numpy()
np_transposed = np.transpose(npimg, (1, 2, 0))
plt.imshow(np_transposed)
plt.xticks([])
plt.yticks([])
plt.tight_layout()
# plt.savefig(path, dpi=400)