-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
203 lines (164 loc) · 7.12 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
def norm_layer(channels, norm_type='gn'):
if norm_type == 'bn':
return nn.BatchNorm2d(channels)
elif norm_type == 'gn':
return nn.GroupNorm(16, channels)
elif norm_type == 'gn2':
return nn.GroupNorm(2, channels)
elif norm_type == 'gn4':
return nn.GroupNorm(4, channels)
elif norm_type == 'gn8':
return nn.GroupNorm(8, channels)
elif norm_type == 'gn32':
return nn.GroupNorm(32, channels)
elif norm_type == 'in':
return nn.InstanceNorm2d(channels)
class lenet(nn.Module):
def __init__(self, norm_type=None, in_channels=1):
super(lenet, self).__init__()
self.conv1 = nn.Conv2d(in_channels, 6, 5)
self.pool1 = nn.AvgPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool2 = nn.AvgPool2d(2, 2)
self.conv3 = nn.Conv2d(16, 120, 5)
self.fc1 = nn.Linear(120, 84)
self.fc2 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(F.tanh(self.conv1(x)))
x = self.pool2(F.tanh(self.conv2(x)))
x = F.tanh(self.conv3(x))
x = x.view(-1, 120)
x = F.tanh(self.fc1(x))
x = self.fc2(x)
return x
# https://github.com/akamaster/pytorch_resnet_cifar10/blob/master/resnet.py
'''
Properly implemented ResNet-s for CIFAR10 as described in paper [1].
The implementation and structure of this file is hugely influenced by [2]
which is implemented for ImageNet and doesn't have option A for identity.
Moreover, most of the implementations on the web is copy-paste from
torchvision's resnet and has wrong number of params.
Proper ResNet-s for CIFAR10 (for fair comparision and etc.) has following
number of layers and parameters:
name | layers | params
ResNet20 | 20 | 0.27M
ResNet32 | 32 | 0.46M
ResNet44 | 44 | 0.66M
ResNet56 | 56 | 0.85M
ResNet110 | 110 | 1.7M
ResNet1202| 1202 | 19.4m
which this implementation indeed has.
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
[2] https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
If you use this implementation in you work, please don't forget to mention the
author, Yerlan Idelbayev.
'''
# __all__ = ['ResNet', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110', 'resnet1202']
def _weights_init(m):
classname = m.__class__.__name__
#print(classname)
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight)
class LambdaLayer(nn.Module):
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd
def forward(self, x):
return self.lambd(x)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, option='A', norm_type='bn'):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = norm_layer(planes, norm_type=norm_type)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = norm_layer(planes, norm_type=norm_type)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
if option == 'A':
"""
For CIFAR10 ResNet paper uses option A.
"""
self.shortcut = LambdaLayer(lambda x:
F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes//4, planes//4), "constant", 0))
elif option == 'B':
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
norm_layer(self.expansion * planes, norm_type=norm_type)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10, norm_type='bn', in_channels=3):
super(ResNet, self).__init__()
self.in_planes = 16
self.conv1 = nn.Conv2d(in_channels, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = norm_layer(16, norm_type=norm_type)
self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1, norm_type=norm_type)
self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2, norm_type=norm_type)
self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2, norm_type=norm_type)
self.linear = nn.Linear(64, num_classes)
self.apply(_weights_init)
def _make_layer(self, block, planes, num_blocks, stride, norm_type):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride, norm_type=norm_type))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def num_rep(self):
return 3
def representation(self, x, ind=4, to_detach=False):
bs = x.shape[0]
res = []
out = F.relu(self.bn1(self.conv1(x)))
# res.append(out.detach().reshape([bs, -1]) if to_detach else out.reshape([bs, -1]))
# if ind == 0:
# return res
out = self.layer1(out)
res.append(out.detach().reshape([bs, -1]) if to_detach else out.reshape([bs, -1]))
if ind == 1:
return res
out = self.layer2(out)
res.append(out.detach().reshape([bs, -1]) if to_detach else out.reshape([bs, -1]))
if ind == 2:
return res
out = self.layer3(out)
res.append(out.detach().reshape([bs, -1]) if to_detach else out.reshape([bs, -1]))
if ind == 3:
return res
out = F.avg_pool2d(out, out.size()[3])
out = out.view(out.size(0), -1)
out = self.linear(out)
res.append(out.detach().reshape([bs, -1]) if to_detach else out.reshape([bs, -1]))
return res
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.avg_pool2d(out, out.size()[3])
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def resnet20(norm_type='gn', **kwargs):
return ResNet(BasicBlock, [3, 3, 3], norm_type=norm_type, **kwargs)
def resnet32(norm_type='gn', **kwargs):
return ResNet(BasicBlock, [5, 5, 5], norm_type=norm_type, **kwargs)
def resnet44(norm_type='gn', **kwargs):
return ResNet(BasicBlock, [7, 7, 7], norm_type=norm_type, **kwargs)
def resnet56(norm_type='gn', **kwargs):
return ResNet(BasicBlock, [9, 9, 9], norm_type=norm_type, **kwargs)
def resnet110(norm_type='gn', **kwargs):
return ResNet(BasicBlock, [18, 18, 18], norm_type=norm_type, **kwargs)
def resnet1202(norm_type='gn', **kwargs):
return ResNet(BasicBlock, [200, 200, 200], norm_type=norm_type, **kwargs)