-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
Copy pathmnist_tutorial.py
105 lines (79 loc) · 3.75 KB
/
mnist_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import keras
import tensorflow as tf
from tensorflow.python.platform import app
from tensorflow.python.platform import flags
from cleverhans.utils_mnist import data_mnist, model_mnist
from cleverhans.utils_tf import tf_model_train, tf_model_eval, batch_eval
from cleverhans.attacks import fgsm
FLAGS = flags.FLAGS
flags.DEFINE_string('train_dir', '/tmp', 'Directory storing the saved model.')
flags.DEFINE_string('filename', 'mnist.ckpt', 'Filename to save model under.')
flags.DEFINE_integer('nb_epochs', 6, 'Number of epochs to train model')
flags.DEFINE_integer('batch_size', 128, 'Size of training batches')
flags.DEFINE_float('learning_rate', 0.1, 'Learning rate for training')
def main(argv=None):
"""
MNIST cleverhans tutorial
:return:
"""
# Set TF random seed to improve reproducibility
tf.set_random_seed(1234)
# Image dimensions ordering should follow the Theano convention
if keras.backend.image_dim_ordering() != 'th':
keras.backend.set_image_dim_ordering('th')
print("INFO: '~/.keras/keras.json' sets 'image_dim_ordering' to 'tf', temporarily setting to 'th'")
# Create TF session and set as Keras backend session
sess = tf.Session()
keras.backend.set_session(sess)
print("Created TensorFlow session and set Keras backend.")
# Get MNIST test data
X_train, Y_train, X_test, Y_test = data_mnist()
print("Loaded MNIST test data.")
assert Y_train.shape[1] == 10.
label_smooth = .1
Y_train = Y_train.clip(label_smooth / 9., 1. - label_smooth)
# Define input TF placeholder
x = tf.placeholder(tf.float32, shape=(None, 1, 28, 28))
y = tf.placeholder(tf.float32, shape=(None, 10))
# Define TF model graph
model = model_mnist()
predictions = model(x)
print("Defined TensorFlow model graph.")
def evaluate():
# Evaluate the accuracy of the MNIST model on legitimate test examples
accuracy = tf_model_eval(sess, x, y, predictions, X_test, Y_test)
assert X_test.shape[0] == 10000, X_test.shape
print('Test accuracy on legitimate test examples: ' + str(accuracy))
# Train an MNIST model
tf_model_train(sess, x, y, predictions, X_train, Y_train, evaluate=evaluate)
# Craft adversarial examples using Fast Gradient Sign Method (FGSM)
adv_x = fgsm(x, predictions, eps=0.3)
X_test_adv, = batch_eval(sess, [x], [adv_x], [X_test])
assert X_test_adv.shape[0] == 10000, X_test_adv.shape
# Evaluate the accuracy of the MNIST model on adversarial examples
accuracy = tf_model_eval(sess, x, y, predictions, X_test_adv, Y_test)
print('Test accuracy on adversarial examples: ' + str(accuracy))
print("Repeating the process, using adversarial training")
# Redefine TF model graph
model_2 = model_mnist()
predictions_2 = model_2(x)
adv_x_2 = fgsm(x, predictions_2, eps=0.3)
predictions_2_adv = model_2(adv_x_2)
def evaluate_2():
# Evaluate the accuracy of the adversarialy trained MNIST model on
# legitimate test examples
accuracy = tf_model_eval(sess, x, y, predictions_2, X_test, Y_test)
print('Test accuracy on legitimate test examples: ' + str(accuracy))
# Evaluate the accuracy of the adversarially trained MNIST model on
# adversarial examples
accuracy_adv = tf_model_eval(sess, x, y, predictions_2_adv, X_test, Y_test)
print('Test accuracy on adversarial examples: ' + str(accuracy_adv))
# Perform adversarial training
tf_model_train(sess, x, y, predictions_2, X_train, Y_train, predictions_adv=predictions_2_adv,
evaluate=evaluate_2)
if __name__ == '__main__':
app.run()