diff --git a/cleverhans/torch/attacks/carlini_wagner_l2.py b/cleverhans/torch/attacks/carlini_wagner_l2.py index 62a186c01..395bda461 100644 --- a/cleverhans/torch/attacks/carlini_wagner_l2.py +++ b/cleverhans/torch/attacks/carlini_wagner_l2.py @@ -114,17 +114,10 @@ class (int). o_bestattack = x.clone().detach() # Map images into the tanh-space - # TODO as of 01/06/2020, PyTorch does not natively support - # arctanh (see, e.g., - # https://github.com/pytorch/pytorch/issues/10324). - # This particular implementation here is not numerically - # stable and should be substituted w/ PyTorch's native - # implementation when it comes out in the future - arctanh = lambda x: 0.5 * torch.log((1 + x) / (1 - x)) x = (x - clip_min) / (clip_max - clip_min) x = torch.clamp(x, 0, 1) x = x * 2 - 1 - x = arctanh(x * 0.999999) + x = torch.arctanh(x * 0.999999) # Prepare some variables modifier = torch.zeros_like(x, requires_grad=True)