diff --git a/README.md b/README.md index 6008d3a06..b4d3a45bc 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -# CleverHans (latest release: v2.1.0) +# CleverHans (latest release: v3.0.0) cleverhans logo @@ -123,7 +123,7 @@ so that these scripts will be conveniently executable from any directory. ## Tutorials: `cleverhans_tutorials` directory To help you get started with the functionalities provided by this library, the -`cleverhans_tutorials/' folder comes with the following tutorials: +`cleverhans_tutorials/` folder comes with the following tutorials: * **MNIST with FGSM** ([code](cleverhans_tutorials/mnist_tutorial_tf.py)): this tutorial covers how to train a MNIST model using TensorFlow, craft adversarial examples using the [fast gradient sign method](https://arxiv.org/abs/1412.6572), @@ -189,7 +189,7 @@ When reporting benchmarks, please: * Report any configuration variables used to determine the behavior of the attack. For example, you might report "We benchmarked the robustness of our method to -adversarial attack using v2.1.0 of CleverHans. On a test set modified by the +adversarial attack using v3.0.0 of CleverHans. On a test set modified by the `FastGradientMethod` with a max-norm `eps` of 0.3, we obtained a test set accuracy of 71.3%." ## Citing this work @@ -230,36 +230,51 @@ other inputs. ## Authors -This library is managed and maintained by Ian Goodfellow (Google Brain), -Nicolas Papernot (Pennsylvania State University), and -Ryan Sheatsley (Pennsylvania State University). +This library is managed and maintained by Ian Goodfellow (Google Brain) and +Nicolas Papernot (Google Brain). The following authors contributed 100 lines or more (ordered according to the GitHub contributors page): -* Nicolas Papernot (Pennsylvania State University, Google Brain intern) -* Fartash Faghri (University of Toronto, Google Brain intern) -* Nicholas Carlini (UC Berkeley) * Ian Goodfellow (Google Brain) -* Reuben Feinman (Symantec) +* Nicolas Papernot (Google Brain) +* Nicholas Carlini (Google Brain) +* Fartash Faghri (University of Toronto) +* Tzu-Wei Sung (National Taiwan University) * Alexey Kurakin (Google Brain) +* Reuben Feinman (New York University) +* Phani Krishna (Video Analytics Lab) +* David Berthelot (Google Brain) +* Tom Brown (Google Brain) * Cihang Xie (Johns Hopkins) * Yash Sharma (The Cooper Union) -* Tom Brown (Google Brain) +* Aashish Kumar * Aurko Roy (Google Brain) * Alexander Matyasko (Nanyang Technological University) +* Anshuman Suri (Microsoft) +* Yen-Chen Lin (MIT) * Vahid Behzadan (Kansas State) -* Karen Hambardzumyan (YerevaNN) +* Jonathan Uesato (DeepMind) * Zhishuai Zhang (Johns Hopkins) -* Yi-Lin Juang (NTUEE) +* Karen Hambardzumyan (YerevaNN) +* Catherine Olsson (Google Brain) +* Aidan Gomez (University of Oxford) * Zhi Li (University of Toronto) -* Ryan Sheatsley (Pennsylvania State University) +* Yi-Lin Juang (NTUEE) +* Pratyush Sahay * Abhibhav Garg (IIT Delhi) -* Jonathan Uesato (MIT) -* Willi Gierke (Hasso Plattner Institute) +* Aditi Raghunathan (Stanford University) +* Yang Song (Stanford University) +* Riccardo Volpi (Italian Institute of Technology) +* Angus Galloway (University of Guelph) * Yinpeng Dong (Tsinghua University) -* David Berthelot (Google Brain) -* Paul Hendricks (NVIDIA) +* Willi Gierke (Hasso Plattner Institute) +* Bruno López * Jonas Rauber (IMPRS) +* Paul Hendricks (NVIDIA) +* Ryan Sheatsley (Pennsylvania State University) * Rujun Long (0101.AI) +* Bogdan Kulynych (EPFL) +* Erfan Noury (UMBC) +* Robert Wagner (Case Western Reserve University) ## Copyright