-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
2175 lines (2018 loc) · 85.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import random
import time
import numpy as np
import torch
import analysis
import utils
from active_learning import compute_utility_scores_entropy
from active_learning import compute_utility_scores_gap
from active_learning import compute_utility_scores_greedy
from architectures.densenet_pre import densenetpre
from architectures.resnet_pre import resnetpre
from architectures.utils_architectures import pytorch2pickle
# from datasets.chexpert.bin import train_chexpert
from datasets.deprecated.chexpert.bin import train_chexpert
from datasets.deprecated.chexpert.chexpert_utils import get_chexpert_dev_loader
from datasets.utils import get_dataset_full_name
from datasets.utils import set_dataset
from datasets.utils import show_dataset_stats
from errors import check_perfect_balance_type
from models.add_tau_per_model import set_taus
from models.big_ensemble_model import BigEnsembleModel
from models.ensemble_model import EnsembleModel
from models.load_models import load_private_model_by_id
from models.load_models import load_private_models
from models.private_model import get_private_model_by_id
from models.utils_models import get_model_name_by_id
from models.utils_models import model_size
from parameters import get_parameters
from utils import eval_distributed_model
from utils import eval_model
from utils import from_result_to_str
from utils import get_unlabeled_indices
from utils import get_unlabeled_set
from utils import metric
from utils import pick_labels_general
from utils import result
from utils import train_model
from utils import update_summary
from virtual_parties import query_ensemble_model_with_virtual_parties
###########################
# ORIGINAL PRIVATE MODELS #
###########################
def train_private_models(args):
"""Train N = num-models private models."""
start_time = time.time()
# Checks
assert 0 <= args.begin_id
assert args.begin_id < args.end_id
assert args.end_id <= args.num_models
# Logs
filename = "logs-(id:{:d}-{:d})-(num-epochs:{:d}).txt".format(
args.begin_id + 1, args.end_id, args.num_epochs
)
if os.name == "nt":
filename = "logs-(id_{:d}-{:d})-(num-epochs_{:d}).txt".format(
args.begin_id + 1, args.end_id, args.num_epochs
)
file = open(os.path.join(args.private_model_path, filename), "w+")
args.log_file = file
args.save_model_path = args.private_model_path
utils.augmented_print("##########################################", file)
utils.augmented_print(
"Training private models on '{}' dataset!".format(args.dataset), file
)
utils.augmented_print(
"Training private models on '{}' architecture!".format(
args.architecture), file
)
utils.augmented_print(
"Number of private models: {:d}".format(args.num_models), file
)
utils.augmented_print(f"Initial learning rate: {args.lr}.", file)
utils.augmented_print(
"Number of epochs for training each model: {:d}".format(
args.num_epochs), file
)
# Data loaders
if args.dataset_type == "imbalanced":
all_private_trainloaders = utils.load_private_data_imbalanced(args)
elif args.dataset_type == "balanced":
if args.balance_type == "standard":
all_private_trainloaders = utils.load_private_data(args=args)
elif args.balance_type == "perfect":
check_perfect_balance_type(args=args)
all_private_trainloaders = utils.load_private_data_imbalanced(args)
else:
raise Exception(f"Unknown args.balance_type: {args.balance_type}.")
else:
raise Exception(f"Unknown dataset type: {args.dataset_type}.")
evalloader = utils.load_evaluation_dataloader(args)
# evalloader = utils.load_private_data(args=args)[0]
print(f"eval dataset: ", evalloader.dataset)
if args.debug is True:
# Logs about the eval set
show_dataset_stats(
dataset=evalloader.dataset, args=args, file=file,
dataset_name="eval"
)
# Training
summary = {
"loss": [],
"acc": [],
"balanced_acc": [],
"auc": [],
}
for id in range(args.begin_id, args.end_id):
utils.augmented_print("##########################################",
file)
# Private model for initial training.
# if args.dataset == "cxpert":
# model = densenetpre()
# print("Loaded densenet121")
#else:
model = get_private_model_by_id(args=args, id=id)
if args.dataset == "pascal":
model_state_dict = model.state_dict()
pretrained_dict34 = torch.load(
"./architectures/resnet50-19c8e357.pth")
pretrained_dict_1 = {
k: v for k, v in pretrained_dict34.items() if
k in model_state_dict
}
model_state_dict.update(pretrained_dict_1)
model.load_state_dict(model_state_dict)
trainloader = all_private_trainloaders[id]
print(f"train dataset for model id: {id}", trainloader.dataset)
# Logs about the train set
if args.debug is True:
show_dataset_stats(
dataset=trainloader.dataset,
args=args,
file=file,
dataset_name="private train",
)
utils.augmented_print("Steps per epoch: {:d}".format(len(trainloader)),
file)
if args.dataset.startswith(
"chexpert") and not args.architecture.startswith(
"densenet"
):
devloader = get_chexpert_dev_loader(args=args)
result, best_model = train_chexpert.run(
args=args,
model=model,
dataloader_train=trainloader,
dataloader_dev=devloader,
dataloader_eval=evalloader,
)
# elif args.dataset == 'cxpert':
# train_cxpert(args=args, model=model, train_loader=trainloader,
# valid_loader=evalloader)
else:
train_model(
args=args, model=model, trainloader=trainloader,
evalloader=evalloader
)
result = eval_distributed_model(
model=model, dataloader=evalloader, args=args
)
model_name = get_model_name_by_id(id=id)
result["model_name"] = model_name
result_str = from_result_to_str(result=result, sep=" | ",
inner_sep=": ")
utils.augmented_print(text=result_str, file=file, flush=True)
summary = update_summary(summary=summary, result=result)
# Checkpoint
state = result
state["state_dict"] = model.state_dict()
filename = "checkpoint-{}.pth.tar".format(model_name)
filepath = os.path.join(args.private_model_path, filename)
torch.save(state, filepath)
utils.augmented_print("##########################################", file)
for key, value in summary.items():
if len(value) > 0:
avg_value = np.mean(value)
utils.augmented_print(
f"Average {key} of private models: {avg_value}", file)
end_time = time.time()
elapsed_time = end_time - start_time
utils.augmented_print(f"elapsed time: {elapsed_time}\n", file, flush=True)
utils.augmented_print("##########################################", file)
file.close()
# def train_private_models(args):
# """Train N = num-models private models."""
# start_time = time.time()
#
# # Checks
# assert 0 <= args.begin_id
# assert args.begin_id < args.end_id
# assert args.end_id <= args.num_models
#
# # Logs
# filename = "logs-(id:{:d}-{:d})-(num-epochs:{:d}).txt".format(
# args.begin_id + 1, args.end_id, args.num_epochs
# )
# if os.name == "nt":
# filename = "logs-(id_{:d}-{:d})-(num-epochs_{:d}).txt".format(
# args.begin_id + 1, args.end_id, args.num_epochs
# )
# file = open(os.path.join(args.private_model_path, filename), "w+")
# args.log_file = file
# args.save_model_path = args.private_model_path
# utils.augmented_print("##########################################", file)
# utils.augmented_print(
# "Training private models on '{}' dataset!".format(args.dataset), file
# )
# utils.augmented_print(
# "Training private models on '{}' architecture!".format(args.architecture), file
# )
# utils.augmented_print(
# "Number of private models: {:d}".format(args.num_models), file
# )
# utils.augmented_print(f"Initial learning rate: {args.lr}.", file)
# utils.augmented_print(
# "Number of epochs for training each model: {:d}".format(args.num_epochs), file
# )
#
# # Data loaders
# if args.dataset_type == "imbalanced":
# all_private_trainloaders = utils.load_private_data_imbalanced(args)
# elif args.dataset_type == "balanced":
# if args.balance_type == "standard":
# all_private_trainloaders = utils.load_private_data(args=args)
# elif args.balance_type == "perfect":
# check_perfect_balance_type(args=args)
# all_private_trainloaders = utils.load_private_data_imbalanced(args)
# else:
# raise Exception(f"Unknown args.balance_type: {args.balance_type}.")
# else:
# raise Exception(f"Unknown dataset type: {args.dataset_type}.")
#
# evalloader = utils.load_evaluation_dataloader(args)
# # evalloader = utils.load_private_data(args=args)[0]
# print(f"eval dataset: ", evalloader.dataset)
#
# if args.debug is True:
# # Logs about the eval set
# show_dataset_stats(
# dataset=evalloader.dataset, args=args, file=file, dataset_name="eval"
# )
#
# # Training
# summary = {
# "loss": [],
# "acc": [],
# "balanced_acc": [],
# "auc": [],
# }
# for id in range(args.begin_id, args.end_id):
# utils.augmented_print("##########################################", file)
#
# # Private model for initial training.
# model = get_private_model_by_id(args=args, id=id)
#
# if args.dataset == "pascal":
# model_state_dict = model.state_dict()
# pretrained_dict34 = torch.load("./architectures/resnet50-19c8e357.pth")
# pretrained_dict_1 = {
# k: v for k, v in pretrained_dict34.items() if k in model_state_dict
# }
# model_state_dict.update(pretrained_dict_1)
# model.load_state_dict(model_state_dict)
#
# trainloader = all_private_trainloaders[id]
#
# print(f"train dataset for model id: {id}", trainloader.dataset)
#
# # Logs about the train set
# if args.debug is True:
# show_dataset_stats(
# dataset=trainloader.dataset,
# args=args,
# file=file,
# dataset_name="private train",
# )
# utils.augmented_print("Steps per epoch: {:d}".format(len(trainloader)), file)
#
# if args.dataset.startswith("chexpert") and not args.architecture.startswith(
# "densenet"
# ):
# devloader = get_chexpert_dev_loader(args=args)
# result, best_model = train_chexpert.run(
# args=args,
# model=model,
# dataloader_train=trainloader,
# dataloader_dev=devloader,
# dataloader_eval=evalloader,
# )
# # elif args.dataset == 'cxpert':
# # train_cxpert(args=args, model=model, train_loader=trainloader,
# # valid_loader=evalloader)
# else:
# train_model(
# args=args, model=model, trainloader=trainloader, evalloader=evalloader
# )
# result = eval_distributed_model(
# model=model, dataloader=evalloader, args=args
# )
#
# model_name = get_model_name_by_id(id=id)
# result["model_name"] = model_name
# result_str = from_result_to_str(result=result, sep=" | ", inner_sep=": ")
# utils.augmented_print(text=result_str, file=file, flush=True)
# summary = update_summary(summary=summary, result=result)
#
# # Checkpoint
# state = result
# state["state_dict"] = model.state_dict()
# filename = "checkpoint-{}.pth.tar".format(model_name)
# filepath = os.path.join(args.private_model_path, filename)
# torch.save(state, filepath)
#
# utils.augmented_print("##########################################", file)
#
# for key, value in summary.items():
# if len(value) > 0:
# avg_value = np.mean(value)
# utils.augmented_print(f"Average {key} of private models: {avg_value}", file)
#
# end_time = time.time()
# elapsed_time = end_time - start_time
# utils.augmented_print(f"elapsed time: {elapsed_time}\n", file, flush=True)
# utils.augmented_print("##########################################", file)
# file.close()
##################
# NOISY ENSEMBLE #
##################
def evaluate_ensemble_model(args):
"""Evaluate the accuracy of noisy ensemble model under varying noise scales."""
# Logs
file = open(
os.path.join(args.ensemble_model_path, "logs-ensemble(all).txt"), "w")
utils.augmented_print("##########################################", file)
utils.augmented_print(
"Evaluating ensemble model 'ensemble(all)' on '{}' dataset!".format(
args.dataset
),
file,
)
utils.augmented_print(
"Number of private models: {:d}".format(args.num_models), file
)
# Create an ensemble model
private_models = load_private_models(args=args)
ensemble_model = EnsembleModel(
model_id=-1, args=args, private_models=private_models
)
# Evalloader
evalloader = utils.load_evaluation_dataloader(args)
# Different sigma values
error_msg = (
f"Unknown number of models: {args.num_models} for dataset {args.dataset}."
)
if args.dataset == "svhn":
if args.num_models == 250:
# sigma_list = [200, 150, 100, 50, 45, 40, 35, 30, 25, 20, 10, 5, 0]
sigma_list = [args.sigma_gnmax]
else:
raise Exception(error_msg)
elif args.dataset == "cifar10":
if args.num_models == 50:
# sigma_list = [40, 35, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9, 8, 7,
# 6, 5, 4, 3, 2, 1, 0]
sigma_list = [args.sigma_gnmax]
else:
raise Exception(error_msg)
elif args.dataset == "mnist":
if args.num_models == 250:
# sigma_list = [1, 0]
# sigma_list = [
# 200, 190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 90, 80,
# 70, 60, 50, 45, 40, 35, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9,
# 8, 7, 6, 5, 4, 3, 2, 1, 0]
sigma_list = [args.sigma_gnmax]
else:
sigma_list = [x for x in range(100)]
# raise Exception(error_msg)
elif args.dataset == "fashion-mnist":
# sigma_list = [50, 45, 40, 35, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9,
# 8, 7, 6, 5, 4, 3, 2, 1, 0]
# sigma_list = [
# 200, 190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 90, 80,
# 70, 60, 50, 45, 40, 35, 30, 25, 20, 15, 14, 13, 12, 11, 10, 9,
# 8, 7, 6, 5, 4, 3, 2, 1, 0]
sigma_list = [args.sigma_gnmax]
# sigma_list = [x for x in range(10)]
elif args.dataset == "cxpert":
sigma_list = [args.sigma_gnmax]
else:
raise Exception(error_msg)
accs = []
gaps = []
for sigma in sigma_list:
args.sigma_gnmax = sigma
acc, acc_detailed, gap, gap_detailed = ensemble_model.evaluate(
evalloader, args)
accs.append(acc)
gaps.append(gap)
utils.augmented_print("sigma_gnmax: {:.4f}".format(args.sigma_gnmax),
file)
utils.augmented_print("Accuracy on evalset: {:.2f}%".format(acc), file)
utils.augmented_print(
"Detailed accuracy on evalset: {}".format(
np.array2string(acc_detailed, precision=2, separator=", ")
),
file,
)
utils.augmented_print(
"Gap on evalset: {:.2f}% ({:.2f}|{:d})".format(
100.0 * gap / args.num_models, gap, args.num_models
),
file,
)
utils.augmented_print(
"Detailed gap on evalset: {}".format(
np.array2string(gap_detailed, precision=2, separator=", ")
),
file,
flush=True,
)
utils.augmented_print(f"Sigma list on evalset: {sigma_list}", file,
flush=True)
utils.augmented_print(f"Accuracies on evalset: {accs}", file, flush=True)
utils.augmented_print(f"Gaps on evalset: {gaps}", file, flush=True)
utils.augmented_print("##########################################", file)
file.close()
if hasattr(private_models[0], "first_time"):
model0 = private_models[0]
print("first time: ", model0.first_time)
print("middle time: ", model0.middle_time)
print("last time: ", model0.last_time)
def evaluate_big_ensemble_model(args):
"""Query-answer process where each constituent model in the ensemble is
big in the sense that we cannot load all the models to the GPUs at once."""
# Logs
file_name = "logs-evaluate-big-ensemble-(num-models:{})-(num-query-parties:{})-(query-mode:{})-(threshold:{:.1f})-(sigma-gnmax:{:.1f})-(sigma-threshold:{:.1f})-(budget:{:.2f}).txt".format(
args.num_models,
args.num_querying_parties,
args.mode,
args.threshold,
args.sigma_gnmax,
args.sigma_threshold,
args.budget,
)
print("ensemble_model_path: ", args.ensemble_model_path)
print("file_name: ", file_name)
file = open(os.path.join(args.ensemble_model_path, file_name), "w")
args.log_file = file
# args.save_model_path = args.ensemble_model_path
args.save_model_path = args.private_model_path
utils.augmented_print("##########################################", file)
utils.augmented_print(
"Query-answer process on '{}' dataset!".format(args.dataset), file
)
utils.augmented_print(
"Number of private models: {:d}".format(args.num_models), file
)
utils.augmented_print(
"Number of querying parties: {:d}".format(args.num_querying_parties),
file
)
utils.augmented_print("Querying mode: {}".format(args.mode), file)
utils.augmented_print("Confidence threshold: {:.1f}".format(args.threshold),
file)
utils.augmented_print(
"Standard deviation of the Gaussian noise in the GNMax mechanism: {:.1f}".format(
args.sigma_gnmax
),
file,
)
utils.augmented_print(
"Standard deviation of the Gaussian noise in the threshold mechanism: {:.1f}".format(
args.sigma_threshold
),
file,
)
utils.augmented_print(
"Pre-defined privacy budget: ({:.2f}, {:.0e})-DP".format(
args.budget, args.delta
),
file,
)
utils.augmented_print("##########################################", file)
all_models_id = -1
big_ensemble = BigEnsembleModel(model_id=all_models_id, args=args)
utils.augmented_print(
"##########################################", file, flush=True
)
dataset_type = "test"
if dataset_type == "dev":
dataloader = utils.load_dev_dataloader(args=args)
elif dataset_type == "test":
dataloader = utils.load_evaluation_dataloader(
args=args) # gets full pascal test set from utils.py
print("Loaded test set")
else:
raise Exception(f"Unsupported dataset_type: {dataset_type}.")
print(f"dataset: ", dataloader.dataset)
# Votes are returned from the individual models.
# Voting based on the test set (not noisy).
votes = big_ensemble.get_votes_cached(
dataloader=dataloader, args=args, dataset_type=dataset_type
)
if args.class_type == 'multilabel_powerset':
axis = 2
else:
axis = 1
votes = pick_labels_general(labels=votes, args=args, axis=axis)
# sigma_gnmax_list = [args.sigma_gnmax]
# sigma_gnmax_list = [0]
if args.command == 'evaluate_big_ensemble_model' and (
args.class_type != 'multilabel_powerset'):
sigma_gnmaxs = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 50, 55, 60,
# 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
]
else:
sigma_gnmaxs = [args.sigma_gnmax]
thresholds = [args.threshold]
sigma_thresholds = [args.sigma_threshold]
# print('sigma_gnmax,balanced accuracy,number of answered queries')
# sigma_gnmaxs = [
# 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
# sigma_gnmaxs = [
# 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
# 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 50, 55, 60]
# sigma_gnmaxs = [0.625]:
# sigma_gnmaxs = range(15, 20, 1)
# sigma_gnmaxs = [5, 6, 7, 8, 9, 10]
# for sigma_gnmax in sigma_gnmaxs:
# header_printed = False
# sigma_thresholds = [10, 15, 20, 25, 30, 35, 40]
# sigma_thresholds = range(25, 51)
# thresholds = [25, 30, 35, 40, 45]
# thresholds = range(45, 56, 1)
# sigma_thresholds = [0.01]
# thresholds = [0.01]
# sigma_gnmaxs = [23]
is_header = False
for sigma_gnmax in sigma_gnmaxs:
for threshold in thresholds:
pass
# if threshold > args.num_models:
# # The threshold has to be lower than the number of labels.
# continue
for sigma_threshold in sigma_thresholds:
if sigma_threshold > threshold:
# The Gaussian noise sigma_threshold has to be lower than the threshold.
continue
args.threshold = threshold
args.sigma_threshold = sigma_threshold
args.sigma_gnmax = sigma_gnmax
indices_queried = np.arange(0, len(dataloader.dataset))
results = big_ensemble.query(
queryloader=dataloader,
args=args,
indices_queried=indices_queried,
votes_queried=votes,
)
msg = {
"private_tau": args.private_tau,
"sigma-gnmax": sigma_gnmax,
"acc": results[metric.acc],
"balanced_accuracy": results[metric.balanced_acc],
"auc": results[metric.auc],
"map": results[metric.map],
}
msg_str = ";".join(
[f"{str(key)};{str(value)}" for key, value in msg.items()]
)
print(msg_str)
num_labels = args.num_classes
if args.pick_labels is not None and args.pick_labels != [-1]:
num_labels = len(args.pick_labels)
file_name = (
f"evaluate_big_ensemble_{args.dataset}_{args.class_type}_"
f"summary_private_tau_{args.private_tau}_"
f"dataset_{args.dataset}_"
f"_private_tau_{args.private_tau}_"
f"labels_{num_labels}_"
f".txt"
)
with open(file_name, "a") as writer:
writer.write(msg_str + "\n")
# file_name = (
# f"evaluate_big_ensemble_{args.class_type}_seaborn_"
# f"dataset_{args.dataset}_"
# f"_private_tau_{args.private_tau}_"
# f"labels_{num_labels}_"
# f"{args.timestamp}.txt"
# )
name = args.class_type
dataset = args.dataset
if dataset == 'celeba':
dataset = 'CelebA'
file_name = f'labels_{name}_{dataset}_{num_labels}_labels.csv'
if args.class_type != 'multilabel_powerset':
with open(file_name, "a") as writer:
if is_header is False:
is_header = True
writer.write('sigma,metric,value\n')
writer.write(
f"{args.sigma_gnmax},ACC,{results[metric.acc]}\n")
writer.write(
f"{args.sigma_gnmax},AUC,{results[metric.auc]}\n")
writer.write(
f"{args.sigma_gnmax},MAP,{results[metric.map]}\n")
print(
"Note: we have the same balanced accuracy and auc because"
" we operate on votes and not the probability outputs."
)
results_str = utils.from_result_to_str(
result=utils.extract_metrics(results)
)
utils.augmented_print(results_str, file, flush=True)
utils.print_metrics_detailed(results=results)
file.close()
################
# QUERY-ANSWER #
################
def query_ensemble_model(args):
"""Query-answer process"""
# Logs
file_name = "logs-(num-models:{})-(num-query-parties:{})-(query-mode:{})-(threshold:{:.1f})-(sigma-gnmax:{:.1f})-(sigma-threshold:{:.1f})-(budget:{:.2f}).txt".format(
args.num_models,
args.num_querying_parties,
args.mode,
args.threshold,
args.sigma_gnmax,
args.sigma_threshold,
args.budget,
)
print("ensemble_model_path: ", args.ensemble_model_path)
print("file_name: ", file_name)
file = open(os.path.join(args.ensemble_model_path, file_name), "w")
args.save_model_path = args.ensemble_model_path
utils.augmented_print("##########################################", file)
utils.augmented_print(
"Query-answer process on '{}' dataset!".format(args.dataset), file
)
utils.augmented_print(
"Number of private models: {:d}".format(args.num_models), file
)
utils.augmented_print(
"Number of querying parties: {:d}".format(args.num_querying_parties),
file
)
utils.augmented_print("Querying mode: {}".format(args.mode), file)
utils.augmented_print("Confidence threshold: {:.1f}".format(args.threshold),
file)
utils.augmented_print(
"Standard deviation of the Gaussian noise in the GNMax mechanism: {:.1f}".format(
args.sigma_gnmax
),
file,
)
utils.augmented_print(
"Standard deviation of the Gaussian noise in the threshold mechanism: {:.1f}".format(
args.sigma_threshold
),
file,
)
utils.augmented_print(
"Pre-defined privacy budget: ({:.2f}, {:.0e})-DP".format(
args.budget, args.delta
),
file,
)
utils.augmented_print("##########################################", file)
model_path = args.private_model_path
private_models = load_private_models(args=args, model_path=model_path)
# Querying parties
prev_num_models = args.num_models
if args.test_virtual is True:
query_ensemble_model_with_virtual_parties(args=args, file=file)
parties_q = private_models[: args.num_querying_parties]
args.querying_parties = parties_q
# Answering parties.
parties_a = []
for i in range(args.num_querying_parties):
# For a given querying party, skip this very querying party as its
# own answering party.
if args.test_virtual is True:
num_private = len(private_models) // args.num_querying_parties
start = i * num_private
end = start + (i + 1) * num_private
private_subset = private_models[0:start] + private_models[end:]
else:
private_subset = private_models[:i] + private_models[i + 1:]
ensemble_model = EnsembleModel(
model_id=i, private_models=private_subset, args=args
)
parties_a.append(ensemble_model)
# Compute utility scores and sort available queries
utils.augmented_print(
"##########################################", file, flush=True
)
if args.attacker_dataset:
unlabeled_dataset = utils.get_attacker_dataset(
args=args, dataset_name=args.attacker_dataset
)
print("attacker uses {} dataset".format(args.attacker_dataset))
else:
unlabeled_dataset = utils.get_unlabeled_set(args=args)
if args.mode == "random":
all_indices = get_unlabeled_indices(args=args,
dataset=unlabeled_dataset)
else:
unlabeled_dataloaders = utils.load_unlabeled_dataloaders(
args=args, unlabeled_dataset=unlabeled_dataset
)
utility_scores = []
# Select the utility function.
if args.mode == "entropy":
utility_function = compute_utility_scores_entropy
elif args.mode == "gap":
utility_function = compute_utility_scores_gap
elif args.mode == "greedy":
utility_function = compute_utility_scores_greedy
else:
raise Exception(f"Unknown query selection mode: {args.mode}.")
for i in range(args.num_querying_parties):
filename = "{}-utility-scores-(mode-{})-dataset-{}.npy".format(
parties_q[i].name, args.mode, args.dataset
)
filepath = os.path.join(args.ensemble_model_path, filename)
if os.path.isfile(filepath) and args.debug is True:
utils.augmented_print(
"Loading utility scores for '{}' in '{}' mode!".format(
parties_q[i].name, args.mode
),
file,
)
utility = np.load(filepath)
else:
utils.augmented_print(
"Computing utility scores for '{}' in '{}' mode!".format(
parties_q[i].name, args.mode
),
file,
)
utility = utility_function(
model=parties_q[i], dataloader=unlabeled_dataloaders[i],
args=args
)
utility_scores.append(utility)
# Sort unlabeled data according to their utility scores.
all_indices = []
for i in range(args.num_querying_parties):
offset = i * (
args.num_unlabeled_samples // args.num_querying_parties)
indices = utility_scores[i].argsort()[::-1] + offset
all_indices.append(indices)
assert len(set(indices)) == len(indices)
if not args.attacker_dataset:
# this assertion seems only fails in entropy mode when using a different attacker dataset, is this okay?
assert (
len(set(np.concatenate(all_indices, axis=0)))
== args.num_unlabeled_samples
)
utils.augmented_print(
"##########################################", file, flush=True
)
utils.augmented_print(
"Select queries according to their utility scores subject to the pre-defined privacy budget",
file,
flush=True,
)
for i in range(args.num_querying_parties):
# Raw ensemble votes
if args.attacker_dataset is None:
attacker_dataset = ""
else:
attacker_dataset = args.attacker_dataset
filename = "{}-raw-votes-(mode-{})-dataset-{}-attacker-{}.npy".format(
parties_a[i].name, args.mode, args.dataset, attacker_dataset
)
filepath = os.path.join(args.ensemble_model_path, filename)
utils.augmented_print(f"filepath: {filepath}", file=file)
if os.path.isfile(filepath) and args.debug is True:
utils.augmented_print(
"Loading raw ensemble votes for '{}' in '{}' mode!".format(
parties_a[i].name, args.mode
),
file,
)
votes = np.load(filepath)
else:
utils.augmented_print(
"Generating raw ensemble votes for '{}' in '{}' mode!".format(
parties_a[i].name, args.mode
),
file,
)
# Load unlabeled data according to a specific order
unlabeled_dataloader_ordered = utils.load_ordered_unlabeled_data(
args, all_indices[i], unlabeled_dataset=unlabeled_dataset
)
if args.vote_type == "confidence_scores":
votes = parties_a[i].inference_confidence_scores(
unlabeled_dataloader_ordered, args
)
else:
votes = parties_a[i].inference(unlabeled_dataloader_ordered,
args)
np.save(file=filepath, arr=votes)
# Analyze how the pre-defined privacy budget will be exhausted when
# answering queries.
(
max_num_query,
dp_eps,
partition,
answered,
order_opt,
) = analysis.analyze_privacy(votes=votes, args=args, file=file)
utils.augmented_print("Querying party: {}".format(parties_q[i].name),
file)
utils.augmented_print(
"Maximum number of queries: {}".format(max_num_query), file
)
utils.augmented_print(
"Privacy guarantee achieved: ({:.4f}, {:.0e})-DP".format(
dp_eps[max_num_query - 1], args.delta
),
file,
)
utils.augmented_print(
"Expected number of queries answered: {:.3f}".format(
answered[max_num_query - 1]
),
file,
)
utils.augmented_print(
"Partition of privacy cost: {}".format(
np.array2string(
partition[max_num_query - 1], precision=3, separator=", "
)
),
file,
)
utils.augmented_print(
"##########################################", file, flush=True
)
utils.augmented_print("Generate query-answer pairs.", file)
indices_queried = all_indices[i][:max_num_query]
queryloader = utils.load_ordered_unlabeled_data(
args=args, indices=indices_queried,
unlabeled_dataset=unlabeled_dataset
)
indices_answered, acc, acc_detailed, gap, gap_detailed = parties_a[
i].query(
queryloader, args, indices_queried
)
utils.save_raw_queries_targets(
args=args,
indices=indices_answered,
dataset=unlabeled_dataset,
name=parties_q[i].name,
)
utils.augmented_print("Accuracy on queries: {:.2f}%".format(acc), file)
utils.augmented_print(
"Detailed accuracy on queries: {}".format(
np.array2string(acc_detailed, precision=2, separator=", ")
),
file,
)
utils.augmented_print(
"Gap on queries: {:.2f}% ({:.2f}|{:d})".format(
100.0 * gap / len(parties_a[i].ensemble),
gap,
len(parties_a[i].ensemble),
),
file,
)
utils.augmented_print(
"Detailed gap on queries: {}".format(
np.array2string(gap_detailed, precision=2, separator=", ")
),
file,
)
utils.augmented_print(
"##########################################", file, flush=True
)
utils.augmented_print("Check query-answer pairs.", file)
queryloader = utils.load_ordered_unlabeled_data(
args=args, indices=indices_answered,
unlabeled_dataset=unlabeled_dataset
)
counts, ratios = utils.class_ratio(queryloader.dataset, args)
utils.augmented_print(
"Label counts: {}".format(np.array2string(counts, separator=", ")),
file
)
utils.augmented_print(
"Class ratios: {}".format(
np.array2string(ratios, precision=2, separator=", ")
),
file,
)
utils.augmented_print(
"Number of samples: {:d}".format(len(queryloader.dataset)), file
)
utils.augmented_print(
"##########################################", file, flush=True
)
file.close()
args.num_models = prev_num_models
def query_big_ensemble_model(args):
"""Query-answer process where each constituent model in the ensemble is
big in the sense that we cannot load all the models to the GPUs at once."""
# Logs
file_name = "logs-(num-models:{})-(num-query-parties:{})-(query-mode:{})-(threshold:{:.1f})-(sigma-gnmax:{:.1f})-(sigma-threshold:{:.1f})-(budget:{:.2f}).txt".format(
args.num_models,
args.num_querying_parties,
args.mode,
args.threshold,
args.sigma_gnmax,
args.sigma_threshold,
args.budget,
)
print("ensemble_model_path: ", args.ensemble_model_path)
print("file_name: ", file_name)
log_file = open(os.path.join(args.ensemble_model_path, file_name), "w")
args.log_file = log_file
# args.save_model_path = args.ensemble_model_path
args.save_model_path = args.private_model_path
utils.augmented_print("##########################################",
log_file)
utils.augmented_print(
"Query-answer process on '{}' dataset!".format(args.dataset), log_file