This repository has been archived by the owner on Mar 24, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathCloudantDFOption.py
71 lines (63 loc) · 2.72 KB
/
CloudantDFOption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#*******************************************************************************
# Copyright (c) 2015 IBM Corp.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#******************************************************************************/
import pprint
from pyspark.sql import SparkSession
spark = SparkSession\
.builder\
.appName("Cloudant Spark SQL Example in Python using dataframes with options")\
.getOrCreate()
cloudant_host = "ACCOUNT.cloudant.com"
cloudant_username = "USERNAME"
cloudant_password = "PASSWORD"
# ***1. Loading dataframe from Cloudant db
df = spark.read.format("com.cloudant.spark") \
.option("cloudant.host", cloudant_host) \
.option("cloudant.username", cloudant_username) \
.option("cloudant.password", cloudant_password) \
.load("n_airportcodemapping")
df.cache() # persisting in memory
df.printSchema()
df.filter(df._id >= 'CAA').select("_id",'airportName').show()
# ***2.Saving dataframe to Cloudant db
df.filter(df._id >= 'CAA').select("_id",'airportName') \
.write.format("com.cloudant.spark") \
.option("cloudant.host", cloudant_host) \
.option("cloudant.username", cloudant_username) \
.option("cloudant.password",cloudant_password) \
.option("bulkSize","100") \
.option("createDBOnSave", "true") \
.save("airportcodemapping_df")
df = spark.read.format("com.cloudant.spark") \
.option("cloudant.host", cloudant_host) \
.option("cloudant.username", cloudant_username) \
.option("cloudant.password", cloudant_password) \
.load("n_flight")
df.printSchema()
total = df.filter(df.flightSegmentId >'AA9') \
.select("flightSegmentId", "scheduledDepartureTime") \
.orderBy(df.flightSegmentId).count()
print "Total", total, "flights from table"
# ***3. Loading dataframe from Cloudant search index
df = spark.read.format("com.cloudant.spark") \
.option("cloudant.host",cloudant_host) \
.option("cloudant.username",cloudant_username) \
.option("cloudant.password",cloudant_password) \
.option("index","_design/view/_search/n_flights").load("n_flight")
df.printSchema()
total = df.filter(df.flightSegmentId >'AA9') \
.select("flightSegmentId", "scheduledDepartureTime") \
.orderBy(df.flightSegmentId).count()
print "Total", total, "flights from index"