-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmeasure-speedups.py
93 lines (76 loc) · 3.02 KB
/
measure-speedups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""
Adopted from TensorFlow LSTM demo:
https://github.com/tensorflow/models/blob/master/tutorials/rnn/ptb/ptb_word_lm.py
Also borrow some parts from this guide:
http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/
"""
import time
import numpy as np
import tensorflow as tf
from tensorflow.python.client import timeline
import sys
from model import WSDModel, train_model
from configs import get_config, SmallConfig
from version import version
import os
flags = tf.flags
logging = tf.logging
flags.DEFINE_string("config", "",
"Choose the type of optimization to test. Possible options are: "
"baseline, same-length, sampled-softmax, optimized-batches. "
"If not provided, test all possible configs.")
FLAGS = flags.FLAGS
class Baseline(SmallConfig):
name = 'baseline'
assume_same_lengths = False
sampled_softmax = False
optimized_batches = False
max_epoch = 10
class AssumeSameLengths(Baseline):
name = 'same-length'
assume_same_lengths = True
sampled_softmax = False
optimized_batches = False
class OptimizedBatches(Baseline):
name = 'optimized-batches'
assume_same_lengths = True
sampled_softmax = False
optimized_batches = True
class SampledSoftmax(Baseline):
name = 'sampled-softmax'
assume_same_lengths = True
sampled_softmax = True
optimized_batches = False
class OptimizedBatchesAndVocab(Baseline):
name = 'optimized-batches-and-vocab'
assume_same_lengths = True
sampled_softmax = True
optimized_batches = True
all_configs = (Baseline, AssumeSameLengths, SampledSoftmax, OptimizedBatches, OptimizedBatchesAndVocab)
def main(_):
tf.set_random_seed(252)
if FLAGS.config:
config, = [cf for cf in all_configs if cf.name == FLAGS.config]
configs = [config]
else:
configs = all_configs
gigaword_for_lstm_wsd_path = os.path.join('preprocessed-data', '2017-11-24-a74bda6', 'gigaword-for-lstm-wsd')
for config in configs:
if config.optimized_batches:
FLAGS.data_path = gigaword_for_lstm_wsd_path
else:
FLAGS.data_path = gigaword_for_lstm_wsd_path + '-shuffled'
FLAGS.dev_path = gigaword_for_lstm_wsd_path + '.dev.npz'
FLAGS.vocab_path = gigaword_for_lstm_wsd_path + '.index.pkl'
FLAGS.save_path = os.path.join('output', version, 'speedups-%s' %config.name)
tf.reset_default_graph()
with tf.Graph().as_default():
initializer = tf.random_uniform_initializer(-config.init_scale,
config.init_scale)
with tf.variable_scope("Model", reuse=None, initializer=initializer):
m_train = WSDModel(config, optimized=True)
with tf.variable_scope("Model", reuse=True):
m_evaluate = WSDModel(config, reuse_variables=True)
train_model(m_train, m_evaluate, FLAGS, config)
if __name__ == "__main__":
tf.app.run()