forked from GAP-LAB-CUHK-SZ/InstPIFu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.py
129 lines (126 loc) · 5.48 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import torch
from tensorboardX import SummaryWriter
import os
import datetime
import time
import numpy as np
import pickle
import torch.nn as nn
#torch.autograd.set_detect_anomaly(True)
def Recon_trainer(cfg,model,optimizer,scheduler,train_loader,test_loader,device,checkpoint):
start_t = time.time()
config = cfg.config
log_dir = os.path.join(config['other']["model_save_dir"], config['exp_name'])
if os.path.exists(log_dir) == False:
os.makedirs(log_dir)
cfg.write_config()
tb_logger = SummaryWriter(log_dir)
start_epoch = 0
if config["resume"] == True:
checkpoint.load(config["weight"])
start_epoch = scheduler.last_epoch
if config['finetune']==True:
start_epoch=0
scheduler.last_epoch = start_epoch
model.train()
iter = 0
min_eval_loss = 10000
for e in range(start_epoch, config['other']['nepoch']):
cfg.log_string("Switch Phase to Train")
model.train()
for batch_id, data_batch in enumerate(train_loader):
optimizer.zero_grad(set_to_none=True)
for key in data_batch:
if isinstance(data_batch[key], list) == False:
data_batch[key] = data_batch[key].float().cuda()
est_data, loss_dict = model(data_batch)
total_loss = torch.mean(loss_dict["loss"])
total_loss.backward()
optimizer.step()
msg = "{:0>8},{}:{},[{}/{}],{}: {}".format(
str(datetime.timedelta(seconds=round(time.time() - start_t))),
"epoch",
e,
batch_id + 1,
len(train_loader),
"total_loss",
total_loss.item()
)
cfg.log_string(msg)
# iter += 1
for loss in loss_dict:
if "total" not in loss:
tb_logger.add_scalar("train/" + loss, torch.mean(loss_dict[loss]).item(), iter)
tb_logger.add_scalar("train/total_loss", total_loss.item(), iter)
current_lr = optimizer.state_dict()['param_groups'][0]['lr']
tb_logger.add_scalar("train/lr", current_lr, iter)
if iter%config['other']['visualize_interval']==0:
rgb = data_batch["image"][0] * torch.tensor([0.229, 0.224, 0.225])[:, None, None].cuda() + torch.tensor(
[0.485, 0.456, 0.406])[:, None, None].cuda()
tb_logger.add_image("rgb", rgb, iter)
if config['method']=="instPIFu":
if iter % config['other']['visualize_interval'] == 0 and config['data']['use_instance_mask']:
pred_mask=est_data["pred_mask"][0]
gt_mask=data_batch['mask'][0]
tb_logger.add_image("gt_mask", gt_mask, iter)
tb_logger.add_image('pred_mask',pred_mask,iter)
if config["other"]["dump_result"]==True and iter%config["other"]["dump_interval"]==0 and config["phase"]=="reconstruction":
#gt_labels=data_batch['inside_class'][0]
pred_class=est_data['pred_class'][0]
sample_points=data_batch["samples"][0]
image=data_batch["image"][0]
save_dict={
"pred_class":pred_class.detach().cpu().numpy(),
"sample_points":sample_points.detach().cpu().numpy(),
"image":image.detach().cpu().numpy(),
}
with open(os.path.join(log_dir,"train_dump_dict_%d.pkl"%(iter)),"wb") as f:
pickle.dump(save_dict,f)
iter += 1
model.eval()
eval_loss = 0
eval_loss_info = {
}
cfg.log_string("Switch Phase to Test")
for batch_id, data_batch in enumerate(test_loader):
for key in data_batch:
if isinstance(data_batch[key], list) == False:
data_batch[key] = data_batch[key].float().cuda()
with torch.no_grad():
est_data, loss_dict = model(data_batch)
total_loss = torch.mean(loss_dict["loss"])
msg = "{:0>8},{}:{},[{}/{}],{}: {}".format(
str(datetime.timedelta(seconds=round(time.time() - start_t))),
"epoch",
e,
batch_id + 1,
len(test_loader),
"test_loss",
total_loss.item()
)
for key in loss_dict:
if "total" not in key:
if key not in eval_loss_info:
eval_loss_info[key] = 0
eval_loss_info[key] += torch.mean(loss_dict[key]).item()
total_loss = torch.mean(total_loss)
eval_loss += total_loss.item()
cfg.log_string(msg)
avg_eval_loss = eval_loss / (batch_id + 1)
for key in eval_loss_info:
eval_loss_info[key] = eval_loss_info[key] / (batch_id + 1)
print("eval_loss is", avg_eval_loss)
tb_logger.add_scalar('eval/eval_loss', avg_eval_loss, e)
for key in eval_loss_info:
tb_logger.add_scalar("eval/" + key, eval_loss_info[key], e)
if isinstance(scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau):
scheduler.step(avg_eval_loss)
else:
scheduler.step()
checkpoint.register_modules(epoch=e, min_loss=avg_eval_loss)
if avg_eval_loss < min_eval_loss:
checkpoint.save('best')
min_eval_loss = avg_eval_loss
else:
checkpoint.save("latest")
e += 1