-
Notifications
You must be signed in to change notification settings - Fork 7
/
CHistogram.h
668 lines (543 loc) · 15.8 KB
/
CHistogram.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
/* BaitFisher (version 1.2.8) a program for designing DNA target enrichment baits
* BaitFilter (version 1.0.6) a program for selecting optimal bait regions
* Copyright 2013-2017 by Christoph Mayer
*
* This source file is part of the BaitFisher-package.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with BaitFisher. If not, see <http://www.gnu.org/licenses/>.
*
*
* For any enquiries send an Email to Christoph Mayer
*
* When publishing work that is based on the results please cite:
* Mayer et al. 2016: BaitFisher: A software package for multi-species target DNA enrichment probe design
*
*/
#ifndef CHISTOGRAM_H
#define CHISTOGRAM_H
// This is the CHistogram class written by Christoph Mayer, Forschungsmuseum Alexander Koenig, Bonn, Germany.
// Discription:
// This class allowes different binning schemes:
// 1) User supplied number of bins together with lower and upper value.
// IMPORTANT: The lower value is inclusive, the upper value is exclusive.
// Therefore, a value equal to the upper value cannot be added
// to the histrogram data.
// If this is a problem, increase the upper value, or take
// a different constructor. See below.
// 2) Vector or range of data. From this the lower and upper bound
// are determined automatically. Number fo bins or automatic binning
// if the number of bins parameter has certain negative values.
// 3) Discrete data. In this case the data is not binned when it is added,
// but stored in a map. The binning is performed upon request.
#include <iostream>
#include <vector>
#include <map>
#include <cmath>
#include <cctype>
#include <iterator>
#include <cstdlib>
#include <algorithm>
#include "statistic_functions.h"
#define EPSS 0.00000000001;
inline bool greater_than_pair(const std::pair<double, unsigned> &a, const std::pair<double, unsigned> &b )
{
return a.second > b.second;
}
inline void add_or_count(std::map<double, unsigned> &m, double &x)
{
std::map<double,unsigned>::iterator it;
it = m.find(x);
if (it == m.end() )
{
m[x] = 1;
}
else
{
++it->second;
}
}
class CHistogram
{
private:
double a; // Inclusive range minimum
double b; // Exclusive range maximum
unsigned bins;
double step;
unsigned entries;
std::vector<unsigned> data;
bool discrete_data; // is determined in initialisation. Switched on with -10.
std::map<double, unsigned> discrete_hist_data;
private:
bool add_intern_non_discrete(double x)
{
// Be careful: If x==b this is allowed, but it places
// this hit into the
if (x < a || x >= b)
{
if (x == b)
std::cerr << "Warning: CHistrogram::add_intern_non_discrete data.siz\n"
<< " Data points that are added must be exclusive the upper bound of the given range.\n\n";
return false;
}
++entries;
unsigned bin = (x-a)/step;
// std::cerr << "HH " << bin << " " << data.size() << std::endl;
++data[bin];
return true;
}
// Adds the value to the discete data map.
// Number of bins as well as a and b are not changed.
bool add_intern_discrete_no_update(double x)
{
++entries;
add_or_count(discrete_hist_data, x);
return true;
}
void update_a_b_bins_discrete_data()
{
// Remember: The discrete data is stored in an automatically sorted map.
// Therefore, the bounds are determined from the first and last element.
// Determine a, b and bins:
a = discrete_hist_data.begin()->first;
b = discrete_hist_data.rbegin()->first;
bins = discrete_hist_data.size();
}
public:
void init_with_vector(const std::vector<double> &vals, int bins_param=0)
{
init_with_range(vals.begin(), vals.end(), vals.size(), bins_param);
}
template <typename T>
void init_with_range(T it_beg, // pointer or iterator to first element
T it_end, // pointer or iterator to element behind last element
unsigned num_range_elements, // number of elements in range
int bins_param=0) // number of bins or if <=0 specifies the method
// to determine this number
{
double mi, ma, me, sd;
discrete_data = false;
if (num_range_elements == 0) // Fill in some dummy values so that everything is well defined. Pratically this does not make sense, but should prevent other classes using this data from crashing.
{
a = 0;
b = 1;
data.push_back(0);
bins = 1;
step = 1;
return;
}
mi = ma = 0; // This code silences the used uninitialized warning of some compilers. It is not necessary, since the two variables are initialized in
// range_min_max as the name suggests.
range_min_max(it_beg, it_end, mi, ma);
// Special case: Only one category and automatic number of bins, but not discrete data
// In principle this is a special case of discrete data but not explicitly mentioned.
if (bins_param != -10 && bins_param <= 0 && mi== ma)
bins_param = 1;
// Formulas for auto bins number: http://en.wikipedia.org/wiki/Histogram
if (bins_param == 0) // Sturges formula -- can perform poorly if n < 30.
{
bins = ceil(log(num_range_elements)/log(2)+1);
}
else if (bins_param == -1) // Scotts formula
{
range_mean_sd(it_beg, it_end, me, sd);
bins = 3.5*sd/pow(num_range_elements, 1./3.);
if (bins < 1)
bins = 1;
}
else if (bins_param == -2) // sqrt formula
{
bins = sqrt(num_range_elements);
}
else if (bins_param == -3) // Freedman-Diaconis' formula // Not implemented
{
bins = 1;
}
else if (bins_param == -4) // minimization of risk function // Not implemented
{
bins = 1;
}
else if (bins_param == -10) // Each value gets its own bin
{
discrete_data = true;
}
else if (bins_param > 0)
{
bins = bins_param;
}
else
{
std::cerr << "Error: the init_param parameter is negative, but its value does not specify a method. This needs to be corrected." << std::endl;
exit(-133);
}
// We have minimum (mi), maximum (ma) and number of bins.
// Now we determine the step size as well as lower and upper bound (a,b).
if (!discrete_data) // Add non discrete values:
{
if (bins > 1)
{
step = (ma-mi)/(bins-1.0);
a = mi - 0.5*step;
b = ma + 0.5*step;
}
else
{
step = 1.0; // fantasy value
a = mi - 0.5*step;
b = ma + 0.5*step;
}
/* std::cerr << "--a " << a << std::endl; */
/* std::cerr << "--b " << b << std::endl; */
/* std::cerr << "--bins " << bins << std::endl; */
/* std::cerr << "--step " << step << std::endl; */
data = std::vector<unsigned>(bins, 0);
while (it_beg != it_end)
{
if (!add_intern_non_discrete(*it_beg) )
{
std::cerr << "Internal error: Value out of range when building the histgram.\n" << std::endl;
exit(-144);
}
++it_beg;
}
}
else // Add dicrete values
{
step = 0;
// Add all values to map:
while (it_beg != it_end)
{
add_intern_discrete_no_update(*it_beg);
++it_beg;
}
update_a_b_bins_discrete_data();
}
}
// Constructor with: lower and upper value as well as the number of
// equidistant bins.
// Here we do not allow to determine the number of bins automatically for the simple reason:
// The number of necessary bins can only be determined if the number of data points is known
// which is not assumed here.
CHistogram(double a_param, double b_param, int bins_param):
a(a_param), b(b_param), bins(bins_param), entries(0), data(bins_param, 0)
{
if (bins_param < 1)
{
std::cerr << "Critical error in constructor of CHistogram. Parameter bins_param must be positive here.\n" << std::endl;
exit(-143);
}
discrete_data = false;
step = (b-a)/bins;
// Adds no data.
}
// Constructor with: range or vector as well as the bins_param
// if bins_param < 1: then the parameter specifies the method to determine the number
// of bins automatically.
// 0: Sturges formula -- can perform poorly if n < 30.
// -1: Scotts formula
// -2: sqrt formula
// -3: Freedman-Diaconis' formula // Not implemented
// -4: minimization of risk function // Not implemented
// if bins_param > 1: this specifies the actual number of bins
CHistogram(const std::vector<double> &vals, int bins_param=0):entries(0)
{
init_with_range(vals.begin(), vals.end(), vals.size(), bins_param);
}
CHistogram(const std::vector<float> &vals, int bins_param=0):entries(0)
{
init_with_range(vals.begin(), vals.end(), vals.size(), bins_param);
}
CHistogram(const std::vector<unsigned> &vals, int bins_param=0):entries(0)
{
init_with_range(vals.begin(), vals.end(), vals.size(), bins_param);
}
template <typename T>
CHistogram(T it_beg,
T it_end,
int bins_param=0):entries(0)
{
init_with_range(it_beg, it_end, std::distance(it_beg, it_end), bins_param);
}
double get_lower()
{
return a;
}
double get_upper()
{
return b;
}
unsigned get_bins()
{
return bins;
}
double get_binsize()
{
return step;
}
// This function should be reimplemented in a cleaner way!!!
// The use of the data field to store disc
const std::vector<unsigned> &get_histogram_data()
{
if (discrete_data) // data needs to be prepared:
{
data.clear();
std::map<double, unsigned>::iterator it_beg, it_end;
it_beg = discrete_hist_data.begin();
it_end = discrete_hist_data.end();
while (it_beg != it_end)
{
data.push_back(it_beg->second);
++it_beg;
}
}
return data;
}
void get_bin_coords(std::vector<double> &v)
{
/* std::cerr << "a " << a << std::endl; */
/* std::cerr << "b " << b << std::endl; */
/* std::cerr << "bins " << bins << std::endl; */
/* std::cerr << "step " << step << std::endl; */
unsigned i;
v.clear();
if (!discrete_data)
{
for (i=0; i<bins; ++i)
{
v.push_back(a+(i+0.5)*step);
}
}
else
{
std::map<double, unsigned>::iterator it_beg, it_end;
it_beg = discrete_hist_data.begin();
it_end = discrete_hist_data.end();
while (it_beg != it_end)
{
v.push_back(it_beg->first);
++it_beg;
}
}
}
//XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
// old code - needs revision. See method to compute coordinates
/* void print_bin_coord_hist_data(std::ostream &os, bool normal=true) */
/* { */
/* unsigned i; */
/* double tmp; */
/* // Not very elegant to change this for os - should be changed */
/* os.setf(std::ios::fixed); */
/* os.precision(6); */
/* if (!discrete_data) */
/* { */
/* for (i=0; i<bins; ++i) */
/* { */
/* if (normal) */
/* tmp = (double) data[i]/entries/step; */
/* else */
/* tmp = (double) data[i]; */
/* os << (a+(i+0.5)*step) << "\t"; */
/* os << tmp << std::endl; */
/* } */
/* } */
/* else */
/* { */
/* std::map<double, unsigned>::iterator it_beg, it_end; */
/* it_beg = discrete_hist_data.begin(); */
/* it_end = discrete_hist_data.end(); */
/* while (it_beg != it_end) */
/* { */
/* if (normal) */
/* tmp = (double) it_beg->second/entries/step; */
/* else */
/* tmp = (double) it_beg->second; */
/* os << it_beg->first << "\t" << it_beg->second << std::endl; */
/* ++it_beg; */
/* } */
/* } */
/* } */
// Returns false if out of range error, else true.
bool add(double x)
{
if (discrete_data)
{
add_intern_discrete_no_update(x);
update_a_b_bins_discrete_data();
return true; // Can never fail
}
else
{
return add_intern_non_discrete(x);
}
}
bool add(std::vector<double> v)
{
int i, n=v.size();
if (!discrete_data) // Non-discrete data:
{
for (i=0; i<n; ++i)
if (!add_intern_non_discrete(v[i]))
return false;
}
else // discrete data:
{
for (i=0; i<n; ++i)
{
add_intern_discrete_no_update(v[i]);
}
update_a_b_bins_discrete_data();
}
return true;
}
template<typename T> // T is some iterator or pointer type
bool add(T b, T e) // defines range
{
if (!discrete_data) // Discrete data:
{
while (b != e)
{
if (!add_intern_non_discrete(*b))
return false;
++b;
}
}
else
{
while (b != e)
{
add_intern_discrete_no_update(*b);
++b;
}
update_a_b_bins_discrete_data();
}
return true;
}
bool is_discrete_data()
{
return discrete_data;
}
unsigned num_entries()
{
return entries;
}
//XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
// old code - needs revision.
/* bool get_dominant_category_and_num(double &cat, unsigned &num) */
/* { */
/* if (discrete_data) */
/* { */
/* std::map<double, unsigned>::iterator it_beg, it_end; */
/* it_beg = discrete_hist_data.begin(); */
/* it_end = discrete_hist_data.end(); */
/* if (it_beg == it_end) */
/* { */
/* return false; */
/* } */
/* cat = it_beg->first; */
/* num = it_beg->second; */
/* while (it_beg != it_end) */
/* { */
/* if (it_beg->second > num) */
/* { */
/* cat = it_beg->first; */
/* num = it_beg->second; */
/* } */
/* ++it_beg; */
/* } */
/* } */
/* else // Non discrete data: */
/* { */
/* double max_key; */
/* unsigned max_value; */
/* unsigned i, n; */
/* n = data.size(); */
/* i = 0; */
/* if (n == 0) */
/* { */
/* return false; */
/* } */
/* max_key = a + step/2; */
/* max_value = data[0]; */
/* while (i != n) */
/* { */
/* if (data[i] > num) */
/* { */
/* max_key = a + (i + 0.5)*step; */
/* max_value = data[i]; */
/* } */
/* ++i; */
/* } */
/* } */
/* return true; */
/* } */
/* // Should be tested before it is used. */
/* void dominant_category(double &value, double &prop) */
/* { */
/* double cat; */
/* unsigned num; */
/* if (get_dominant_category_and_num(cat, num)) */
/* { */
/* value = cat; */
/* prop = (double)num/entries; */
/* } */
/* else */
/* { */
/* value = 0; */
/* prop = -1; */
/* } */
/* } */
void categories_sorted_by_dominance(std::vector<std::pair<double, unsigned> > &cat_val_pair_vec)
{
if (discrete_data)
{
std::map<double, unsigned>::iterator it_beg, it_end;
it_beg = discrete_hist_data.begin();
it_end = discrete_hist_data.end();
if (it_beg == it_end)
{
return;
}
while (it_beg != it_end)
{
double cat;
unsigned num;
cat = it_beg->first;
num = it_beg->second;
cat_val_pair_vec.push_back(std::make_pair(cat, num));
++it_beg;
}
}
else // Non discrete data:
{
double key;
unsigned value;
unsigned i, n;
n = data.size();
i = 0;
if (n == 0)
{
return;
}
while (i != n)
{
key = a + step/2;
value = data[0];
cat_val_pair_vec.push_back(std::make_pair(key, value));
++i;
}
}
sort(cat_val_pair_vec.begin(), cat_val_pair_vec.end(), greater_than_pair);
}
};
#endif