forked from izgzhen/iris-coq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproofmode.v
43 lines (36 loc) · 1.47 KB
/
proofmode.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
From iris.base_logic Require Export derived.
From iris.algebra Require Import proofmode_classes.
Import base_logic.bi.uPred.
(* Setup of the proof mode *)
Section class_instances.
Context {M : ucmraT}.
Implicit Types P Q R : uPred M.
Global Instance into_pure_cmra_valid `{CmraDiscrete A} (a : A) :
@IntoPure (uPredI M) (✓ a) (✓ a).
Proof. by rewrite /IntoPure discrete_valid. Qed.
Global Instance from_pure_cmra_valid {A : cmraT} af (a : A) :
@FromPure (uPredI M) af (✓ a) (✓ a).
Proof.
rewrite /FromPure. eapply bi.pure_elim; [by apply bi.affinely_if_elim|]=> ?.
rewrite -uPred.cmra_valid_intro //.
Qed.
Global Instance from_sep_ownM (a b1 b2 : M) :
IsOp a b1 b2 →
FromSep (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof. intros. by rewrite /FromSep -ownM_op -is_op. Qed.
Global Instance from_sep_ownM_core_id (a b1 b2 : M) :
IsOp a b1 b2 → TCOr (CoreId b1) (CoreId b2) →
FromAnd (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof.
intros ? H. rewrite /FromAnd (is_op a) ownM_op.
destruct H; by rewrite bi.persistent_and_sep.
Qed.
Global Instance into_and_ownM p (a b1 b2 : M) :
IsOp a b1 b2 → IntoAnd p (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof.
intros. apply bi.intuitionistically_if_mono. by rewrite (is_op a) ownM_op bi.sep_and.
Qed.
Global Instance into_sep_ownM (a b1 b2 : M) :
IsOp a b1 b2 → IntoSep (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof. intros. by rewrite /IntoSep (is_op a) ownM_op. Qed.
End class_instances.