forked from izgzhen/iris-coq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathenvironments.v
714 lines (635 loc) · 30.2 KB
/
environments.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
From iris.proofmode Require Import base.
From iris.algebra Require Export base.
From iris.bi Require Export bi.
From iris.bi Require Import tactics.
Set Default Proof Using "Type".
Import bi.
Inductive env (A : Type) : Type :=
| Enil : env A
| Esnoc : env A → ident → A → env A.
Arguments Enil {_}.
Arguments Esnoc {_} _ _ _.
Instance: Params (@Enil) 1.
Instance: Params (@Esnoc) 1.
Fixpoint env_lookup {A} (i : ident) (Γ : env A) : option A :=
match Γ with
| Enil => None
| Esnoc Γ j x => if ident_beq i j then Some x else env_lookup i Γ
end.
Module env_notations.
Notation "y ≫= f" := (pm_option_bind f y).
Notation "x ← y ; z" := (y ≫= λ x, z).
Notation "' x1 .. xn ← y ; z" := (y ≫= (λ x1, .. (λ xn, z) .. )).
Notation "Γ !! j" := (env_lookup j Γ).
(* andb will not be simplified by pm_reduce *)
Notation "b1 && b2" := (if b1 then b2 else false) : bool_scope.
End env_notations.
Import env_notations.
Inductive env_wf {A} : env A → Prop :=
| Enil_wf : env_wf Enil
| Esnoc_wf Γ i x : Γ !! i = None → env_wf Γ → env_wf (Esnoc Γ i x).
Fixpoint env_to_list {A} (E : env A) : list A :=
match E with Enil => [] | Esnoc Γ _ x => x :: env_to_list Γ end.
Coercion env_to_list : env >-> list.
Instance: Params (@env_to_list) 1.
Fixpoint env_dom {A} (Γ : env A) : list ident :=
match Γ with Enil => [] | Esnoc Γ i _ => i :: env_dom Γ end.
Fixpoint env_app {A} (Γapp : env A) (Γ : env A) : option (env A) :=
match Γapp with
| Enil => Some Γ
| Esnoc Γapp i x =>
Γ' ← env_app Γapp Γ;
match Γ' !! i with None => Some (Esnoc Γ' i x) | Some _ => None end
end.
Fixpoint env_replace {A} (i: ident) (Γi: env A) (Γ: env A) : option (env A) :=
match Γ with
| Enil => None
| Esnoc Γ j x =>
if ident_beq i j then env_app Γi Γ else
match Γi !! j with
| None => Γ' ← env_replace i Γi Γ; Some (Esnoc Γ' j x)
| Some _ => None
end
end.
Fixpoint env_delete {A} (i : ident) (Γ : env A) : env A :=
match Γ with
| Enil => Enil
| Esnoc Γ j x => if ident_beq i j then Γ else Esnoc (env_delete i Γ) j x
end.
Fixpoint env_lookup_delete {A} (i : ident) (Γ : env A) : option (A * env A) :=
match Γ with
| Enil => None
| Esnoc Γ j x =>
if ident_beq i j then Some (x,Γ)
else ''(y,Γ') ← env_lookup_delete i Γ; Some (y, Esnoc Γ' j x)
end.
Inductive env_Forall2 {A B} (P : A → B → Prop) : env A → env B → Prop :=
| env_Forall2_nil : env_Forall2 P Enil Enil
| env_Forall2_snoc Γ1 Γ2 i x y :
env_Forall2 P Γ1 Γ2 → P x y → env_Forall2 P (Esnoc Γ1 i x) (Esnoc Γ2 i y).
Inductive env_subenv {A} : relation (env A) :=
| env_subenv_nil : env_subenv Enil Enil
| env_subenv_snoc Γ1 Γ2 i x :
env_subenv Γ1 Γ2 → env_subenv (Esnoc Γ1 i x) (Esnoc Γ2 i x)
| env_subenv_skip Γ1 Γ2 i y :
env_subenv Γ1 Γ2 → env_subenv Γ1 (Esnoc Γ2 i y).
Section env.
Context {A : Type}.
Implicit Types Γ : env A.
Implicit Types i : ident.
Implicit Types x : A.
Hint Resolve Esnoc_wf Enil_wf.
Ltac simplify :=
repeat match goal with
| _ => progress simplify_eq/=
| H : context [ident_beq ?s1 ?s2] |- _ => destruct (ident_beq_reflect s1 s2)
| |- context [ident_beq ?s1 ?s2] => destruct (ident_beq_reflect s1 s2)
| H : context [pm_option_bind _ ?x] |- _ => destruct x eqn:?
| |- context [pm_option_bind _ ?x] => destruct x eqn:?
| _ => case_match
end.
Lemma env_lookup_perm Γ i x : Γ !! i = Some x → Γ ≡ₚ x :: env_delete i Γ.
Proof.
induction Γ; intros; simplify; rewrite 1?Permutation_swap; f_equiv; eauto.
Qed.
Lemma env_lookup_snoc Γ i P : env_lookup i (Esnoc Γ i P) = Some P.
Proof. induction Γ; simplify; auto. Qed.
Lemma env_lookup_snoc_ne Γ i j P :
i ≠ j → env_lookup i (Esnoc Γ j P) = env_lookup i Γ.
Proof. induction Γ=> ?; simplify; auto. Qed.
Lemma env_app_perm Γ Γapp Γ' :
env_app Γapp Γ = Some Γ' → env_to_list Γ' ≡ₚ Γapp ++ Γ.
Proof. revert Γ'; induction Γapp; intros; simplify; f_equal; auto. Qed.
Lemma env_app_fresh Γ Γapp Γ' i :
env_app Γapp Γ = Some Γ' → Γapp !! i = None → Γ !! i = None → Γ' !! i = None.
Proof. revert Γ'. induction Γapp; intros; simplify; eauto. Qed.
Lemma env_app_fresh_1 Γ Γapp Γ' i x :
env_app Γapp Γ = Some Γ' → Γ' !! i = None → Γ !! i = None.
Proof. revert Γ'. induction Γapp; intros; simplify; eauto. Qed.
Lemma env_app_disjoint Γ Γapp Γ' i :
env_app Γapp Γ = Some Γ' → Γapp !! i = None ∨ Γ !! i = None.
Proof.
revert Γ'.
induction Γapp; intros; simplify; naive_solver eauto using env_app_fresh_1.
Qed.
Lemma env_app_wf Γ Γapp Γ' : env_app Γapp Γ = Some Γ' → env_wf Γ → env_wf Γ'.
Proof. revert Γ'. induction Γapp; intros; simplify; eauto. Qed.
Lemma env_replace_fresh Γ Γj Γ' i j :
env_replace j Γj Γ = Some Γ' →
Γj !! i = None → env_delete j Γ !! i = None → Γ' !! i = None.
Proof. revert Γ'. induction Γ; intros; simplify; eauto using env_app_fresh. Qed.
Lemma env_replace_wf Γ Γi Γ' i :
env_replace i Γi Γ = Some Γ' → env_wf (env_delete i Γ) → env_wf Γ'.
Proof.
revert Γ'. induction Γ; intros ??; simplify; [|inversion_clear 1];
eauto using env_app_wf, env_replace_fresh.
Qed.
Lemma env_replace_lookup Γ Γi Γ' i :
env_replace i Γi Γ = Some Γ' → is_Some (Γ !! i).
Proof. revert Γ'. induction Γ; intros; simplify; eauto. Qed.
Lemma env_replace_perm Γ Γi Γ' i :
env_replace i Γi Γ = Some Γ' → Γ' ≡ₚ Γi ++ env_delete i Γ.
Proof.
revert Γ'. induction Γ as [|Γ IH j y]=>Γ' ?; simplify; auto using env_app_perm.
rewrite -Permutation_middle -IH //.
Qed.
Lemma env_lookup_delete_correct Γ i :
env_lookup_delete i Γ = (x ← Γ !! i; Some (x,env_delete i Γ)).
Proof. induction Γ; intros; simplify; eauto. Qed.
Lemma env_lookup_delete_Some Γ Γ' i x :
env_lookup_delete i Γ = Some (x,Γ') ↔ Γ !! i = Some x ∧ Γ' = env_delete i Γ.
Proof. rewrite env_lookup_delete_correct; simplify; naive_solver. Qed.
Lemma env_lookup_env_delete Γ j : env_wf Γ → env_delete j Γ !! j = None.
Proof. induction 1; intros; simplify; eauto. Qed.
Lemma env_lookup_env_delete_ne Γ i j : i ≠ j → env_delete j Γ !! i = Γ !! i.
Proof. induction Γ; intros; simplify; eauto. Qed.
Lemma env_delete_fresh Γ i j : Γ !! i = None → env_delete j Γ !! i = None.
Proof. induction Γ; intros; simplify; eauto. Qed.
Lemma env_delete_wf Γ j : env_wf Γ → env_wf (env_delete j Γ).
Proof. induction 1; simplify; eauto using env_delete_fresh. Qed.
Global Instance env_Forall2_refl (P : relation A) :
Reflexive P → Reflexive (env_Forall2 P).
Proof. intros ? Γ. induction Γ; constructor; auto. Qed.
Global Instance env_Forall2_sym (P : relation A) :
Symmetric P → Symmetric (env_Forall2 P).
Proof. induction 2; constructor; auto. Qed.
Global Instance env_Forall2_trans (P : relation A) :
Transitive P → Transitive (env_Forall2 P).
Proof.
intros ? Γ1 Γ2 Γ3 HΓ; revert Γ3.
induction HΓ; inversion_clear 1; constructor; eauto.
Qed.
Global Instance env_Forall2_antisymm (P Q : relation A) :
AntiSymm P Q → AntiSymm (env_Forall2 P) (env_Forall2 Q).
Proof. induction 2; inversion_clear 1; constructor; auto. Qed.
Lemma env_Forall2_impl {B} (P Q : A → B → Prop) Γ Σ :
env_Forall2 P Γ Σ → (∀ x y, P x y → Q x y) → env_Forall2 Q Γ Σ.
Proof. induction 1; constructor; eauto. Qed.
Global Instance Esnoc_proper (P : relation A) :
Proper (env_Forall2 P ==> (=) ==> P ==> env_Forall2 P) Esnoc.
Proof. intros Γ1 Γ2 HΓ i ? <-; by constructor. Qed.
Global Instance env_to_list_proper (P : relation A) :
Proper (env_Forall2 P ==> Forall2 P) env_to_list.
Proof. induction 1; constructor; auto. Qed.
Lemma env_Forall2_fresh {B} (P : A → B → Prop) Γ Σ i :
env_Forall2 P Γ Σ → Γ !! i = None → Σ !! i = None.
Proof. by induction 1; simplify. Qed.
Lemma env_Forall2_wf {B} (P : A → B → Prop) Γ Σ :
env_Forall2 P Γ Σ → env_wf Γ → env_wf Σ.
Proof. induction 1; inversion_clear 1; eauto using env_Forall2_fresh. Qed.
Lemma env_subenv_fresh Γ Σ i : env_subenv Γ Σ → Σ !! i = None → Γ !! i = None.
Proof. by induction 1; simplify. Qed.
Lemma env_subenv_wf Γ Σ : env_subenv Γ Σ → env_wf Σ → env_wf Γ.
Proof. induction 1; inversion_clear 1; eauto using env_subenv_fresh. Qed.
Global Instance env_to_list_subenv_proper :
Proper (env_subenv ==> sublist) (@env_to_list A).
Proof. induction 1; simpl; constructor; auto. Qed.
End env.
Record envs (PROP : bi) :=
Envs { env_intuitionistic : env PROP; env_spatial : env PROP; env_counter : positive }.
Add Printing Constructor envs.
Arguments Envs {_} _ _ _.
Arguments env_intuitionistic {_} _.
Arguments env_spatial {_} _.
Arguments env_counter {_} _.
Record envs_wf {PROP} (Δ : envs PROP) := {
env_intuitionistic_valid : env_wf (env_intuitionistic Δ);
env_spatial_valid : env_wf (env_spatial Δ);
envs_disjoint i : env_intuitionistic Δ !! i = None ∨ env_spatial Δ !! i = None
}.
Definition of_envs {PROP} (Δ : envs PROP) : PROP :=
(⌜envs_wf Δ⌝ ∧ □ [∧] env_intuitionistic Δ ∗ [∗] env_spatial Δ)%I.
Instance: Params (@of_envs) 1.
Arguments of_envs : simpl never.
(* We seal [envs_entails], so that it does not get unfolded by the
proofmode's own tactics, such as [iIntros (?)]. *)
Definition envs_entails_aux : seal (λ PROP (Δ : envs PROP) (Q : PROP), (of_envs Δ ⊢ Q)).
Proof. by eexists. Qed.
Definition envs_entails := envs_entails_aux.(unseal).
Definition envs_entails_eq : envs_entails = _ := envs_entails_aux.(seal_eq).
Arguments envs_entails {PROP} Δ Q%I : rename.
Instance: Params (@envs_entails) 1.
Record envs_Forall2 {PROP : bi} (R : relation PROP) (Δ1 Δ2 : envs PROP) := {
env_intuitionistic_Forall2 : env_Forall2 R (env_intuitionistic Δ1) (env_intuitionistic Δ2);
env_spatial_Forall2 : env_Forall2 R (env_spatial Δ1) (env_spatial Δ2)
}.
Definition envs_dom {PROP} (Δ : envs PROP) : list ident :=
env_dom (env_intuitionistic Δ) ++ env_dom (env_spatial Δ).
Definition envs_lookup {PROP} (i : ident) (Δ : envs PROP) : option (bool * PROP) :=
let (Γp,Γs,n) := Δ in
match env_lookup i Γp with
| Some P => Some (true, P)
| None => P ← env_lookup i Γs; Some (false, P)
end.
Definition envs_delete {PROP} (remove_persistent : bool)
(i : ident) (p : bool) (Δ : envs PROP) : envs PROP :=
let (Γp,Γs,n) := Δ in
match p with
| true => Envs (if remove_persistent then env_delete i Γp else Γp) Γs n
| false => Envs Γp (env_delete i Γs) n
end.
Definition envs_lookup_delete {PROP} (remove_persistent : bool)
(i : ident) (Δ : envs PROP) : option (bool * PROP * envs PROP) :=
let (Γp,Γs,n) := Δ in
match env_lookup_delete i Γp with
| Some (P,Γp') => Some (true, P, Envs (if remove_persistent then Γp' else Γp) Γs n)
| None => ''(P,Γs') ← env_lookup_delete i Γs; Some (false, P, Envs Γp Γs' n)
end.
Fixpoint envs_lookup_delete_list {PROP} (remove_persistent : bool)
(js : list ident) (Δ : envs PROP) : option (bool * list PROP * envs PROP) :=
match js with
| [] => Some (true, [], Δ)
| j :: js =>
''(p,P,Δ') ← envs_lookup_delete remove_persistent j Δ;
''(q,Ps,Δ'') ← envs_lookup_delete_list remove_persistent js Δ';
Some ((p:bool) && q, P :: Ps, Δ'')
end.
Definition envs_snoc {PROP} (Δ : envs PROP)
(p : bool) (j : ident) (P : PROP) : envs PROP :=
let (Γp,Γs,n) := Δ in
if p then Envs (Esnoc Γp j P) Γs n else Envs Γp (Esnoc Γs j P) n.
Definition envs_app {PROP : bi} (p : bool)
(Γ : env PROP) (Δ : envs PROP) : option (envs PROP) :=
let (Γp,Γs,n) := Δ in
match p with
| true => _ ← env_app Γ Γs; Γp' ← env_app Γ Γp; Some (Envs Γp' Γs n)
| false => _ ← env_app Γ Γp; Γs' ← env_app Γ Γs; Some (Envs Γp Γs' n)
end.
Definition envs_simple_replace {PROP : bi} (i : ident) (p : bool)
(Γ : env PROP) (Δ : envs PROP) : option (envs PROP) :=
let (Γp,Γs,n) := Δ in
match p with
| true => _ ← env_app Γ Γs; Γp' ← env_replace i Γ Γp; Some (Envs Γp' Γs n)
| false => _ ← env_app Γ Γp; Γs' ← env_replace i Γ Γs; Some (Envs Γp Γs' n)
end.
Definition envs_replace {PROP : bi} (i : ident) (p q : bool)
(Γ : env PROP) (Δ : envs PROP) : option (envs PROP) :=
if beq p q then envs_simple_replace i p Γ Δ
else envs_app q Γ (envs_delete true i p Δ).
Definition env_spatial_is_nil {PROP} (Δ : envs PROP) : bool :=
if env_spatial Δ is Enil then true else false.
Definition envs_clear_spatial {PROP} (Δ : envs PROP) : envs PROP :=
Envs (env_intuitionistic Δ) Enil (env_counter Δ).
Definition envs_clear_persistent {PROP} (Δ : envs PROP) : envs PROP :=
Envs Enil (env_spatial Δ) (env_counter Δ).
Definition envs_incr_counter {PROP} (Δ : envs PROP) : envs PROP :=
Envs (env_intuitionistic Δ) (env_spatial Δ) (Pos_succ (env_counter Δ)).
Fixpoint envs_split_go {PROP}
(js : list ident) (Δ1 Δ2 : envs PROP) : option (envs PROP * envs PROP) :=
match js with
| [] => Some (Δ1, Δ2)
| j :: js =>
''(p,P,Δ1') ← envs_lookup_delete true j Δ1;
if p : bool then envs_split_go js Δ1 Δ2 else
envs_split_go js Δ1' (envs_snoc Δ2 false j P)
end.
(* if [d = Right] then [result = (remaining hyps, hyps named js)] and
if [d = Left] then [result = (hyps named js, remaining hyps)] *)
Definition envs_split {PROP} (d : direction)
(js : list ident) (Δ : envs PROP) : option (envs PROP * envs PROP) :=
''(Δ1,Δ2) ← envs_split_go js Δ (envs_clear_spatial Δ);
if d is Right then Some (Δ1,Δ2) else Some (Δ2,Δ1).
Definition env_to_prop {PROP : bi} (Γ : env PROP) : PROP :=
let fix aux Γ acc :=
match Γ with Enil => acc | Esnoc Γ _ P => aux Γ (P ∗ acc)%I end
in
match Γ with Enil => emp%I | Esnoc Γ _ P => aux Γ P end.
Section envs.
Context {PROP : bi}.
Implicit Types Γ : env PROP.
Implicit Types Δ : envs PROP.
Implicit Types P Q : PROP.
Lemma of_envs_eq Δ :
of_envs Δ = (⌜envs_wf Δ⌝ ∧ □ [∧] env_intuitionistic Δ ∗ [∗] env_spatial Δ)%I.
Proof. done. Qed.
(** An environment is a ∗ of something intuitionistic and the spatial environment.
TODO: Can we define it as such? *)
Lemma of_envs_eq' Δ :
of_envs Δ ⊣⊢ (⌜envs_wf Δ⌝ ∧ □ [∧] env_intuitionistic Δ) ∗ [∗] env_spatial Δ.
Proof. rewrite of_envs_eq persistent_and_sep_assoc //. Qed.
Global Instance envs_Forall2_refl (R : relation PROP) :
Reflexive R → Reflexive (envs_Forall2 R).
Proof. by constructor. Qed.
Global Instance envs_Forall2_sym (R : relation PROP) :
Symmetric R → Symmetric (envs_Forall2 R).
Proof. intros ??? [??]; by constructor. Qed.
Global Instance envs_Forall2_trans (R : relation PROP) :
Transitive R → Transitive (envs_Forall2 R).
Proof. intros ??? [??] [??] [??]; constructor; etrans; eauto. Qed.
Global Instance envs_Forall2_antisymm (R R' : relation PROP) :
AntiSymm R R' → AntiSymm (envs_Forall2 R) (envs_Forall2 R').
Proof. intros ??? [??] [??]; constructor; by eapply (anti_symm _). Qed.
Lemma envs_Forall2_impl (R R' : relation PROP) Δ1 Δ2 :
envs_Forall2 R Δ1 Δ2 → (∀ P Q, R P Q → R' P Q) → envs_Forall2 R' Δ1 Δ2.
Proof. intros [??] ?; constructor; eauto using env_Forall2_impl. Qed.
Global Instance of_envs_mono : Proper (envs_Forall2 (⊢) ==> (⊢)) (@of_envs PROP).
Proof.
intros [Γp1 Γs1] [Γp2 Γs2] [Hp Hs]; apply and_mono; simpl in *.
- apply pure_mono=> -[???]. constructor;
naive_solver eauto using env_Forall2_wf, env_Forall2_fresh.
- by repeat f_equiv.
Qed.
Global Instance of_envs_proper :
Proper (envs_Forall2 (⊣⊢) ==> (⊣⊢)) (@of_envs PROP).
Proof.
intros Δ1 Δ2 HΔ; apply (anti_symm (⊢)); apply of_envs_mono;
eapply (envs_Forall2_impl (⊣⊢)); [| |symmetry|]; eauto using equiv_entails.
Qed.
Global Instance Envs_proper (R : relation PROP) :
Proper (env_Forall2 R ==> env_Forall2 R ==> eq ==> envs_Forall2 R) (@Envs PROP).
Proof. by constructor. Qed.
Global Instance envs_entails_proper :
Proper (envs_Forall2 (⊣⊢) ==> (⊣⊢) ==> iff) (@envs_entails PROP).
Proof. rewrite envs_entails_eq. solve_proper. Qed.
Global Instance envs_entails_flip_mono :
Proper (envs_Forall2 (⊢) ==> flip (⊢) ==> flip impl) (@envs_entails PROP).
Proof. rewrite envs_entails_eq=> Δ1 Δ2 ? P1 P2 <- <-. by f_equiv. Qed.
Lemma envs_delete_persistent Δ i : envs_delete false i true Δ = Δ.
Proof. by destruct Δ. Qed.
Lemma envs_delete_spatial Δ i :
envs_delete false i false Δ = envs_delete true i false Δ.
Proof. by destruct Δ. Qed.
Lemma envs_lookup_delete_Some Δ Δ' rp i p P :
envs_lookup_delete rp i Δ = Some (p,P,Δ')
↔ envs_lookup i Δ = Some (p,P) ∧ Δ' = envs_delete rp i p Δ.
Proof.
rewrite /envs_lookup /envs_delete /envs_lookup_delete.
destruct Δ as [Γp Γs]; rewrite /= !env_lookup_delete_correct.
destruct (Γp !! i), (Γs !! i); naive_solver.
Qed.
Lemma envs_lookup_sound' Δ rp i p P :
envs_lookup i Δ = Some (p,P) →
of_envs Δ ⊢ □?p P ∗ of_envs (envs_delete rp i p Δ).
Proof.
rewrite /envs_lookup /envs_delete /of_envs=>?. apply pure_elim_l=> Hwf.
destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
- rewrite pure_True ?left_id; last (destruct Hwf, rp; constructor;
naive_solver eauto using env_delete_wf, env_delete_fresh).
destruct rp.
+ rewrite (env_lookup_perm Γp) //= intuitionistically_and.
by rewrite and_sep_intuitionistically -assoc.
+ rewrite {1}intuitionistically_sep_dup {1}(env_lookup_perm Γp) //=.
by rewrite intuitionistically_and and_elim_l -assoc.
- destruct (Γs !! i) eqn:?; simplify_eq/=.
rewrite pure_True ?left_id; last (destruct Hwf; constructor;
naive_solver eauto using env_delete_wf, env_delete_fresh).
rewrite (env_lookup_perm Γs) //=. by rewrite !assoc -(comm _ P).
Qed.
Lemma envs_lookup_sound Δ i p P :
envs_lookup i Δ = Some (p,P) →
of_envs Δ ⊢ □?p P ∗ of_envs (envs_delete true i p Δ).
Proof. apply envs_lookup_sound'. Qed.
Lemma envs_lookup_persistent_sound Δ i P :
envs_lookup i Δ = Some (true,P) → of_envs Δ ⊢ □ P ∗ of_envs Δ.
Proof. intros ?%(envs_lookup_sound' _ false). by destruct Δ. Qed.
Lemma envs_lookup_sound_2 Δ i p P :
envs_wf Δ → envs_lookup i Δ = Some (p,P) →
□?p P ∗ of_envs (envs_delete true i p Δ) ⊢ of_envs Δ.
Proof.
rewrite /envs_lookup /of_envs=>Hwf ?. rewrite [⌜envs_wf Δ⌝%I]pure_True // left_id.
destruct Δ as [Γp Γs], (Γp !! i) eqn:?; simplify_eq/=.
- rewrite (env_lookup_perm Γp) //= intuitionistically_and
and_sep_intuitionistically and_elim_r.
cancel [□ P]%I. solve_sep_entails.
- destruct (Γs !! i) eqn:?; simplify_eq/=.
rewrite (env_lookup_perm Γs) //= and_elim_r.
cancel [P]. solve_sep_entails.
Qed.
Lemma envs_lookup_split Δ i p P :
envs_lookup i Δ = Some (p,P) → of_envs Δ ⊢ □?p P ∗ (□?p P -∗ of_envs Δ).
Proof.
intros. apply pure_elim with (envs_wf Δ).
{ rewrite of_envs_eq. apply and_elim_l. }
intros. rewrite {1}envs_lookup_sound//.
apply sep_mono_r. apply wand_intro_l, envs_lookup_sound_2; done.
Qed.
Lemma envs_lookup_delete_sound Δ Δ' rp i p P :
envs_lookup_delete rp i Δ = Some (p,P,Δ') → of_envs Δ ⊢ □?p P ∗ of_envs Δ'.
Proof. intros [? ->]%envs_lookup_delete_Some. by apply envs_lookup_sound'. Qed.
Lemma envs_lookup_delete_list_sound Δ Δ' rp js p Ps :
envs_lookup_delete_list rp js Δ = Some (p,Ps,Δ') →
of_envs Δ ⊢ □?p [∗] Ps ∗ of_envs Δ'.
Proof.
revert Δ Δ' p Ps. induction js as [|j js IH]=> Δ Δ'' p Ps ?; simplify_eq/=.
{ by rewrite intuitionistically_emp left_id. }
destruct (envs_lookup_delete rp j Δ) as [[[q1 P] Δ']|] eqn:Hj; simplify_eq/=.
apply envs_lookup_delete_Some in Hj as [Hj ->].
destruct (envs_lookup_delete_list _ js _) as [[[q2 Ps'] ?]|] eqn:?; simplify_eq/=.
rewrite -intuitionistically_if_sep_2 -assoc.
rewrite envs_lookup_sound' //; rewrite IH //.
repeat apply sep_mono=>//; apply intuitionistically_if_flag_mono; by destruct q1.
Qed.
Lemma envs_lookup_delete_list_cons Δ Δ' Δ'' rp j js p1 p2 P Ps :
envs_lookup_delete rp j Δ = Some (p1, P, Δ') →
envs_lookup_delete_list rp js Δ' = Some (p2, Ps, Δ'') →
envs_lookup_delete_list rp (j :: js) Δ = Some (p1 && p2, (P :: Ps), Δ'').
Proof. rewrite //= => -> //= -> //=. Qed.
Lemma envs_lookup_delete_list_nil Δ rp :
envs_lookup_delete_list rp [] Δ = Some (true, [], Δ).
Proof. done. Qed.
Lemma envs_lookup_snoc Δ i p P :
envs_lookup i Δ = None → envs_lookup i (envs_snoc Δ p i P) = Some (p, P).
Proof.
rewrite /envs_lookup /envs_snoc=> ?.
destruct Δ as [Γp Γs], p, (Γp !! i); simplify_eq; by rewrite env_lookup_snoc.
Qed.
Lemma envs_lookup_snoc_ne Δ i j p P :
i ≠ j → envs_lookup i (envs_snoc Δ p j P) = envs_lookup i Δ.
Proof.
rewrite /envs_lookup /envs_snoc=> ?.
destruct Δ as [Γp Γs], p; simplify_eq; by rewrite env_lookup_snoc_ne.
Qed.
Lemma envs_snoc_sound Δ p i P :
envs_lookup i Δ = None → of_envs Δ ⊢ □?p P -∗ of_envs (envs_snoc Δ p i P).
Proof.
rewrite /envs_lookup /envs_snoc /of_envs=> ?; apply pure_elim_l=> Hwf.
destruct Δ as [Γp Γs], (Γp !! i) eqn:?, (Γs !! i) eqn:?; simplify_eq/=.
apply wand_intro_l; destruct p; simpl.
- apply and_intro; [apply pure_intro|].
+ destruct Hwf; constructor; simpl; eauto using Esnoc_wf.
intros j; destruct (ident_beq_reflect j i); naive_solver.
+ by rewrite intuitionistically_and and_sep_intuitionistically assoc.
- apply and_intro; [apply pure_intro|].
+ destruct Hwf; constructor; simpl; eauto using Esnoc_wf.
intros j; destruct (ident_beq_reflect j i); naive_solver.
+ solve_sep_entails.
Qed.
Lemma envs_app_sound Δ Δ' p Γ :
envs_app p Γ Δ = Some Δ' →
of_envs Δ ⊢ (if p then □ [∧] Γ else [∗] Γ) -∗ of_envs Δ'.
Proof.
rewrite /of_envs /envs_app=> ?; apply pure_elim_l=> Hwf.
destruct Δ as [Γp Γs], p; simplify_eq/=.
- destruct (env_app Γ Γs) eqn:Happ,
(env_app Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
apply wand_intro_l, and_intro; [apply pure_intro|].
+ destruct Hwf; constructor; simpl; eauto using env_app_wf.
intros j. apply (env_app_disjoint _ _ _ j) in Happ.
naive_solver eauto using env_app_fresh.
+ rewrite (env_app_perm _ _ Γp') //.
rewrite big_opL_app intuitionistically_and and_sep_intuitionistically.
solve_sep_entails.
- destruct (env_app Γ Γp) eqn:Happ,
(env_app Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
apply wand_intro_l, and_intro; [apply pure_intro|].
+ destruct Hwf; constructor; simpl; eauto using env_app_wf.
intros j. apply (env_app_disjoint _ _ _ j) in Happ.
naive_solver eauto using env_app_fresh.
+ rewrite (env_app_perm _ _ Γs') // big_opL_app. solve_sep_entails.
Qed.
Lemma envs_app_singleton_sound Δ Δ' p j Q :
envs_app p (Esnoc Enil j Q) Δ = Some Δ' → of_envs Δ ⊢ □?p Q -∗ of_envs Δ'.
Proof. move=> /envs_app_sound. destruct p; by rewrite /= right_id. Qed.
Lemma envs_simple_replace_sound' Δ Δ' i p Γ :
envs_simple_replace i p Γ Δ = Some Δ' →
of_envs (envs_delete true i p Δ) ⊢ (if p then □ [∧] Γ else [∗] Γ) -∗ of_envs Δ'.
Proof.
rewrite /envs_simple_replace /envs_delete /of_envs=> ?.
apply pure_elim_l=> Hwf. destruct Δ as [Γp Γs], p; simplify_eq/=.
- destruct (env_app Γ Γs) eqn:Happ,
(env_replace i Γ Γp) as [Γp'|] eqn:?; simplify_eq/=.
apply wand_intro_l, and_intro; [apply pure_intro|].
+ destruct Hwf; constructor; simpl; eauto using env_replace_wf.
intros j. apply (env_app_disjoint _ _ _ j) in Happ.
destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
+ rewrite (env_replace_perm _ _ Γp') //.
rewrite big_opL_app intuitionistically_and and_sep_intuitionistically.
solve_sep_entails.
- destruct (env_app Γ Γp) eqn:Happ,
(env_replace i Γ Γs) as [Γs'|] eqn:?; simplify_eq/=.
apply wand_intro_l, and_intro; [apply pure_intro|].
+ destruct Hwf; constructor; simpl; eauto using env_replace_wf.
intros j. apply (env_app_disjoint _ _ _ j) in Happ.
destruct (decide (i = j)); try naive_solver eauto using env_replace_fresh.
+ rewrite (env_replace_perm _ _ Γs') // big_opL_app. solve_sep_entails.
Qed.
Lemma envs_simple_replace_singleton_sound' Δ Δ' i p j Q :
envs_simple_replace i p (Esnoc Enil j Q) Δ = Some Δ' →
of_envs (envs_delete true i p Δ) ⊢ □?p Q -∗ of_envs Δ'.
Proof. move=> /envs_simple_replace_sound'. destruct p; by rewrite /= right_id. Qed.
Lemma envs_simple_replace_sound Δ Δ' i p P Γ :
envs_lookup i Δ = Some (p,P) → envs_simple_replace i p Γ Δ = Some Δ' →
of_envs Δ ⊢ □?p P ∗ ((if p then □ [∧] Γ else [∗] Γ) -∗ of_envs Δ').
Proof. intros. by rewrite envs_lookup_sound// envs_simple_replace_sound'//. Qed.
Lemma envs_simple_replace_maybe_sound Δ Δ' i p P Γ :
envs_lookup i Δ = Some (p,P) → envs_simple_replace i p Γ Δ = Some Δ' →
of_envs Δ ⊢ □?p P ∗ (((if p then □ [∧] Γ else [∗] Γ) -∗ of_envs Δ') ∧ (□?p P -∗ of_envs Δ)).
Proof.
intros. apply pure_elim with (envs_wf Δ).
{ rewrite of_envs_eq. apply and_elim_l. }
intros. rewrite {1}envs_lookup_sound//. apply sep_mono_r, and_intro.
- rewrite envs_simple_replace_sound'//.
- apply wand_intro_l, envs_lookup_sound_2; done.
Qed.
Lemma envs_simple_replace_singleton_sound Δ Δ' i p P j Q :
envs_lookup i Δ = Some (p,P) →
envs_simple_replace i p (Esnoc Enil j Q) Δ = Some Δ' →
of_envs Δ ⊢ □?p P ∗ (□?p Q -∗ of_envs Δ').
Proof.
intros. by rewrite envs_lookup_sound// envs_simple_replace_singleton_sound'//.
Qed.
Lemma envs_replace_sound' Δ Δ' i p q Γ :
envs_replace i p q Γ Δ = Some Δ' →
of_envs (envs_delete true i p Δ) ⊢ (if q then □ [∧] Γ else [∗] Γ) -∗ of_envs Δ'.
Proof.
rewrite /envs_replace; destruct (beq _ _) eqn:Hpq.
- apply eqb_prop in Hpq as ->. apply envs_simple_replace_sound'.
- apply envs_app_sound.
Qed.
Lemma envs_replace_singleton_sound' Δ Δ' i p q j Q :
envs_replace i p q (Esnoc Enil j Q) Δ = Some Δ' →
of_envs (envs_delete true i p Δ) ⊢ □?q Q -∗ of_envs Δ'.
Proof. move=> /envs_replace_sound'. destruct q; by rewrite /= ?right_id. Qed.
Lemma envs_replace_sound Δ Δ' i p q P Γ :
envs_lookup i Δ = Some (p,P) → envs_replace i p q Γ Δ = Some Δ' →
of_envs Δ ⊢ □?p P ∗ ((if q then □ [∧] Γ else [∗] Γ) -∗ of_envs Δ').
Proof. intros. by rewrite envs_lookup_sound// envs_replace_sound'//. Qed.
Lemma envs_replace_singleton_sound Δ Δ' i p q P j Q :
envs_lookup i Δ = Some (p,P) →
envs_replace i p q (Esnoc Enil j Q) Δ = Some Δ' →
of_envs Δ ⊢ □?p P ∗ (□?q Q -∗ of_envs Δ').
Proof. intros. by rewrite envs_lookup_sound// envs_replace_singleton_sound'//. Qed.
Lemma envs_lookup_envs_clear_spatial Δ j :
envs_lookup j (envs_clear_spatial Δ)
= ''(p,P) ← envs_lookup j Δ; if p : bool then Some (p,P) else None.
Proof.
rewrite /envs_lookup /envs_clear_spatial.
destruct Δ as [Γp Γs]; simpl; destruct (Γp !! j) eqn:?; simplify_eq/=; auto.
by destruct (Γs !! j).
Qed.
Lemma envs_clear_spatial_sound Δ :
of_envs Δ ⊢ of_envs (envs_clear_spatial Δ) ∗ [∗] env_spatial Δ.
Proof.
rewrite /of_envs /envs_clear_spatial /=. apply pure_elim_l=> Hwf.
rewrite right_id -persistent_and_sep_assoc. apply and_intro; [|done].
apply pure_intro. destruct Hwf; constructor; simpl; auto using Enil_wf.
Qed.
Lemma env_spatial_is_nil_intuitionistically Δ :
env_spatial_is_nil Δ = true → of_envs Δ ⊢ □ of_envs Δ.
Proof.
intros. unfold of_envs; destruct Δ as [? []]; simplify_eq/=.
rewrite !right_id /bi_intuitionistically {1}affinely_and_r persistently_and.
by rewrite persistently_affinely_elim persistently_idemp persistently_pure.
Qed.
Lemma envs_lookup_envs_delete Δ i p P :
envs_wf Δ →
envs_lookup i Δ = Some (p,P) → envs_lookup i (envs_delete true i p Δ) = None.
Proof.
rewrite /envs_lookup /envs_delete=> -[?? Hdisj] Hlookup.
destruct Δ as [Γp Γs], p; simplify_eq/=.
- rewrite env_lookup_env_delete //. revert Hlookup.
destruct (Hdisj i) as [->| ->]; [|done]. by destruct (Γs !! _).
- rewrite env_lookup_env_delete //. by destruct (Γp !! _).
Qed.
Lemma envs_lookup_envs_delete_ne Δ rp i j p :
i ≠ j → envs_lookup i (envs_delete rp j p Δ) = envs_lookup i Δ.
Proof.
rewrite /envs_lookup /envs_delete=> ?. destruct Δ as [Γp Γs],p; simplify_eq/=.
- destruct rp=> //. by rewrite env_lookup_env_delete_ne.
- destruct (Γp !! i); simplify_eq/=; by rewrite ?env_lookup_env_delete_ne.
Qed.
Lemma envs_incr_counter_equiv Δ : envs_Forall2 (⊣⊢) Δ (envs_incr_counter Δ).
Proof. done. Qed.
Lemma envs_incr_counter_sound Δ : of_envs (envs_incr_counter Δ) ⊣⊢ of_envs Δ.
Proof. by f_equiv. Qed.
Lemma envs_split_go_sound js Δ1 Δ2 Δ1' Δ2' :
(∀ j P, envs_lookup j Δ1 = Some (false, P) → envs_lookup j Δ2 = None) →
envs_split_go js Δ1 Δ2 = Some (Δ1',Δ2') →
of_envs Δ1 ∗ of_envs Δ2 ⊢ of_envs Δ1' ∗ of_envs Δ2'.
Proof.
revert Δ1 Δ2.
induction js as [|j js IH]=> Δ1 Δ2 Hlookup HΔ; simplify_eq/=; [done|].
apply pure_elim with (envs_wf Δ1)=> [|Hwf].
{ by rewrite /of_envs !and_elim_l sep_elim_l. }
destruct (envs_lookup_delete _ j Δ1)
as [[[[] P] Δ1'']|] eqn:Hdel; simplify_eq/=; auto.
apply envs_lookup_delete_Some in Hdel as [??]; subst.
rewrite envs_lookup_sound //; rewrite /= (comm _ P) -assoc.
rewrite -(IH _ _ _ HΔ); last first.
{ intros j' P'; destruct (decide (j = j')) as [->|].
- by rewrite (envs_lookup_envs_delete _ _ _ P).
- rewrite envs_lookup_envs_delete_ne // envs_lookup_snoc_ne //. eauto. }
rewrite (envs_snoc_sound Δ2 false j P) /= ?wand_elim_r; eauto.
Qed.
Lemma envs_split_sound Δ d js Δ1 Δ2 :
envs_split d js Δ = Some (Δ1,Δ2) → of_envs Δ ⊢ of_envs Δ1 ∗ of_envs Δ2.
Proof.
rewrite /envs_split=> ?. rewrite -(idemp bi_and (of_envs Δ)).
rewrite {2}envs_clear_spatial_sound.
rewrite (env_spatial_is_nil_intuitionistically (envs_clear_spatial _)) //.
rewrite -persistently_and_intuitionistically_sep_l.
rewrite (and_elim_l (<pers> _)%I)
persistently_and_intuitionistically_sep_r intuitionistically_elim.
destruct (envs_split_go _ _) as [[Δ1' Δ2']|] eqn:HΔ; [|done].
apply envs_split_go_sound in HΔ as ->; last first.
{ intros j P. by rewrite envs_lookup_envs_clear_spatial=> ->. }
destruct d; simplify_eq/=; solve_sep_entails.
Qed.
Lemma env_to_prop_sound Γ : env_to_prop Γ ⊣⊢ [∗] Γ.
Proof.
destruct Γ as [|Γ ? P]; simpl; first done.
revert P. induction Γ as [|Γ IH ? Q]=>P; simpl.
- by rewrite right_id.
- rewrite /= IH (comm _ Q _) assoc. done.
Qed.
End envs.