-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathsphere_collision_avoidance.py
144 lines (103 loc) · 4.34 KB
/
sphere_collision_avoidance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import pathlib
import optas
from optas.visualize import Visualizer
def main(vis=True):
# Setup robot model
cwd = pathlib.Path(__file__).parent.resolve() # path to current working directory
urdf_filename = os.path.join(cwd, "robots", "kuka_lwr", "kuka_lwr.urdf")
robot_model = optas.RobotModel(urdf_filename=urdf_filename, time_derivs=[0, 1, 2])
name = robot_model.get_name()
qnom = optas.deg2rad([0, -45, 0, 90, 0, 45, 0])
ee_link = "end_effector_ball"
T0 = robot_model.get_global_link_transform(ee_link, qnom)
z0 = T0[:3, 2]
def compute_initial_configuration():
# Compute an intiail configuration
start_eff_position = optas.DM([0.825, -0.35, 0.2])
builder = optas.OptimizationBuilder(1, robots=robot_model, derivs_align=True)
q = builder.get_model_state(name, 0)
T = robot_model.get_global_link_transform(ee_link, q)
p = T[:3, 3]
z = T[:3, 2]
builder.enforce_model_limits(name)
builder.add_equality_constraint("eff_pos", p, start_eff_position)
builder.add_equality_constraint("eff_ori", z, z0)
builder.initial_configuration(name, time_deriv=1)
builder.initial_configuration(name, time_deriv=2)
builder.add_cost_term("nominal", optas.sumsqr(q - qnom))
solver = optas.CasADiSolver(builder.build()).setup("ipopt")
solver.reset_initial_seed({f"{name}/q": qnom})
solution = solver.solve()
return solution[f"{name}/q"]
obs = optas.DM.zeros(3, 6)
obs[0, :] = 0.55
obs[1, :] = 0.0
obs[2, :] = optas.DM([0.1, 0.2, 0.3, 0.4, 0.5, 0.6]).T
obsrad = 0.1 * optas.DM.ones(6)
linkrad = 0.15
q0 = compute_initial_configuration()
duration = 10.
T = 20
builder = optas.OptimizationBuilder(T, robots=robot_model, derivs_align=True)
dt = duration / float(T - 1)
builder.enforce_model_limits(name)
builder.integrate_model_states(name, 2, dt) # acc->vel
builder.integrate_model_states(name, 1, dt) # vel->pos
builder.initial_configuration(name, init=q0)
builder.initial_configuration(name, time_deriv=1)
builder.initial_configuration(name, time_deriv=2)
goal_eff_position = optas.DM([0.825, 0.35, 0.2])
qf = builder.get_model_state(name, t=-1)
Tf = robot_model.get_global_link_transform(ee_link, qf)
pf = Tf[:3, 3]
zf = Tf[:3, 2]
builder.add_equality_constraint(
"eff_pos", pf, goal_eff_position, reduce_constraint=True
)
builder.add_equality_constraint("eff_ori", zf, z0, reduce_constraint=True)
builder.add_cost_term(
"min_vel", optas.sumsqr(builder.get_model_states(name, time_deriv=1))
)
builder.add_cost_term(
"min_acc", 100*optas.sumsqr(builder.get_model_states(name, time_deriv=2))
)
builder.add_cost_term("nominal", 1e2 * optas.sumsqr(qf - qnom))
obstacle_names = [f"obs{i}" for i in range(6)]
link_names = ['end_effector_ball', 'lwr_arm_7_link', 'lwr_arm_5_link', 'lwr_arm_6_link']
builder.sphere_collision_avoidance_constraints(name, obstacle_names, link_names=link_names)
solver = optas.CasADiSolver(builder.build()).setup("ipopt")
params = {}
for link_name in link_names:
params[link_name + "_radii"] = linkrad
for i, obstacle_name in enumerate(obstacle_names):
params[obstacle_name + "_position"] = obs[:, i]
params[obstacle_name + "_radii"] = obsrad[i]
solver.reset_parameters(params)
print("Solver ready")
solution = solver.solve()
if not vis:
return 0
Q = solution[f"{name}/q"]
vis = Visualizer()
vis.robot_traj(robot_model, Q, animate=True, duration=duration)
vis.robot(robot_model, q0, alpha=0.5)
vis.grid_floor()
# vis.link(optas.DM.eye(4), axis_scale=1, axis_linewidth=8)
for i in range(6):
vis.sphere(radius=obsrad[i], position=obs[:, i], rgb=[1.0, 0.0, 0.0])
for link_name in link_names:
postraj = optas.DM.zeros(3, T)
for t in range(T):
postraj[:, t] = robot_model.get_global_link_position(link_name, Q[:, t])
vis.sphere_traj(
radius=linkrad,
position_traj=postraj,
rgb=[1, 0.64705882352, 0.0],
alpha_spec={'style': 'const', 'alpha': 0.25},
duration=duration,
animate=True,
)
vis.start()
if __name__ == '__main__':
main()