-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathdataset.py
45 lines (36 loc) · 1.49 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
from PIL import Image
from torch.utils.data import Dataset
def load_voice(voice_item):
voice_data = np.load(voice_item['filepath'])
voice_data = voice_data.T.astype('float32')
voice_label = voice_item['label_id']
return voice_data, voice_label
def load_face(face_item):
face_data = Image.open(face_item['filepath']).convert('RGB').resize([64, 64])
face_data = np.transpose(np.array(face_data), (2, 0, 1))
face_data = ((face_data - 127.5) / 127.5).astype('float32')
face_label = face_item['label_id']
return face_data, face_label
class VoiceDataset(Dataset):
def __init__(self, voice_list, nframe_range):
self.voice_list = voice_list
self.crop_nframe = nframe_range[1]
def __getitem__(self, index):
voice_data, voice_label = load_voice(self.voice_list[index])
assert self.crop_nframe <= voice_data.shape[1]
pt = np.random.randint(voice_data.shape[1] - self.crop_nframe + 1)
voice_data = voice_data[:, pt:pt+self.crop_nframe]
return voice_data, voice_label
def __len__(self):
return len(self.voice_list)
class FaceDataset(Dataset):
def __init__(self, face_list):
self.face_list = face_list
def __getitem__(self, index):
face_data, face_label = load_face(self.face_list[index])
if np.random.random() > 0.5:
face_data = np.flip(face_data, axis=2).copy()
return face_data, face_label
def __len__(self):
return len(self.face_list)