forked from open-telemetry/opentelemetry-collector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.go
619 lines (552 loc) · 21.1 KB
/
graph.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
// Package graph contains the internal graph representation of the pipelines.
//
// [Build] is the constructor for a [Graph] object. The method calls out to helpers that transform the graph from a config
// to a DAG of components. The configuration undergoes additional validation here as well, and is used to instantiate
// the components of the pipeline.
//
// [Graph.StartAll] starts all components in each pipeline.
//
// [Graph.ShutdownAll] stops all components in each pipeline.
package graph // import "go.opentelemetry.io/collector/service/internal/graph"
import (
"context"
"errors"
"fmt"
"strings"
"go.uber.org/multierr"
"go.uber.org/zap"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/simple"
"gonum.org/v1/gonum/graph/topo"
"go.opentelemetry.io/collector/component"
"go.opentelemetry.io/collector/component/componentstatus"
"go.opentelemetry.io/collector/connector"
"go.opentelemetry.io/collector/connector/xconnector"
"go.opentelemetry.io/collector/consumer"
"go.opentelemetry.io/collector/consumer/xconsumer"
"go.opentelemetry.io/collector/internal/fanoutconsumer"
"go.opentelemetry.io/collector/pipeline"
"go.opentelemetry.io/collector/pipeline/xpipeline"
"go.opentelemetry.io/collector/service/internal/builders"
"go.opentelemetry.io/collector/service/internal/capabilityconsumer"
"go.opentelemetry.io/collector/service/internal/status"
"go.opentelemetry.io/collector/service/pipelines"
)
// Settings holds configuration for building builtPipelines.
type Settings struct {
Telemetry component.TelemetrySettings
BuildInfo component.BuildInfo
ReceiverBuilder *builders.ReceiverBuilder
ProcessorBuilder *builders.ProcessorBuilder
ExporterBuilder *builders.ExporterBuilder
ConnectorBuilder *builders.ConnectorBuilder
// PipelineConfigs is a map of component.ID to PipelineConfig.
PipelineConfigs pipelines.Config
ReportStatus status.ServiceStatusFunc
}
type Graph struct {
// All component instances represented as nodes, with directed edges indicating data flow.
componentGraph *simple.DirectedGraph
// Keep track of how nodes relate to pipelines, so we can declare edges in the graph.
pipelines map[pipeline.ID]*pipelineNodes
// Keep track of status source per node
instanceIDs map[int64]*componentstatus.InstanceID
telemetry component.TelemetrySettings
}
// Build builds a full pipeline graph.
// Build also validates the configuration of the pipelines and does the actual initialization of each Component in the Graph.
func Build(ctx context.Context, set Settings) (*Graph, error) {
pipelines := &Graph{
componentGraph: simple.NewDirectedGraph(),
pipelines: make(map[pipeline.ID]*pipelineNodes, len(set.PipelineConfigs)),
instanceIDs: make(map[int64]*componentstatus.InstanceID),
telemetry: set.Telemetry,
}
for pipelineID := range set.PipelineConfigs {
pipelines.pipelines[pipelineID] = &pipelineNodes{
receivers: make(map[int64]graph.Node),
exporters: make(map[int64]graph.Node),
}
}
if err := pipelines.createNodes(set); err != nil {
return nil, err
}
pipelines.createEdges()
return pipelines, pipelines.buildComponents(ctx, set)
}
// Creates a node for each instance of a component and adds it to the graph.
// Validates that connectors are configured to export and receive correctly.
func (g *Graph) createNodes(set Settings) error {
// Build a list of all connectors for easy reference.
connectors := make(map[component.ID]struct{})
// Keep track of connectors and where they are used. (map[connectorID][]pipelineID).
connectorsAsExporter := make(map[component.ID][]pipeline.ID)
connectorsAsReceiver := make(map[component.ID][]pipeline.ID)
// Build each pipelineNodes struct for each pipeline by parsing the pipelineCfg.
// Also populates the connectors, connectorsAsExporter and connectorsAsReceiver maps.
for pipelineID, pipelineCfg := range set.PipelineConfigs {
pipe := g.pipelines[pipelineID]
for _, recvID := range pipelineCfg.Receivers {
// Checks if this receiver is a connector or a regular receiver.
if set.ConnectorBuilder.IsConfigured(recvID) {
connectors[recvID] = struct{}{}
connectorsAsReceiver[recvID] = append(connectorsAsReceiver[recvID], pipelineID)
continue
}
rcvrNode := g.createReceiver(pipelineID, recvID)
pipe.receivers[rcvrNode.ID()] = rcvrNode
}
pipe.capabilitiesNode = newCapabilitiesNode(pipelineID)
for _, procID := range pipelineCfg.Processors {
procNode := g.createProcessor(pipelineID, procID)
pipe.processors = append(pipe.processors, procNode)
}
pipe.fanOutNode = newFanOutNode(pipelineID)
for _, exprID := range pipelineCfg.Exporters {
if set.ConnectorBuilder.IsConfigured(exprID) {
connectors[exprID] = struct{}{}
connectorsAsExporter[exprID] = append(connectorsAsExporter[exprID], pipelineID)
continue
}
expNode := g.createExporter(pipelineID, exprID)
pipe.exporters[expNode.ID()] = expNode
}
}
for connID := range connectors {
factory := set.ConnectorBuilder.Factory(connID.Type())
if factory == nil {
return fmt.Errorf("connector factory not available for: %q", connID.Type())
}
connFactory := factory.(connector.Factory)
expTypes := make(map[pipeline.Signal]bool)
for _, pipelineID := range connectorsAsExporter[connID] {
// The presence of each key indicates how the connector is used as an exporter.
// The value is initially set to false. Later we will set the value to true *if* we
// confirm that there is a supported corresponding use as a receiver.
expTypes[pipelineID.Signal()] = false
}
recTypes := make(map[pipeline.Signal]bool)
for _, pipelineID := range connectorsAsReceiver[connID] {
// The presence of each key indicates how the connector is used as a receiver.
// The value is initially set to false. Later we will set the value to true *if* we
// confirm that there is a supported corresponding use as an exporter.
recTypes[pipelineID.Signal()] = false
}
for expType := range expTypes {
for recType := range recTypes {
// Typechecks the connector's receiving and exporting datatypes.
if connectorStability(connFactory, expType, recType) != component.StabilityLevelUndefined {
expTypes[expType] = true
recTypes[recType] = true
}
}
}
for expType, supportedUse := range expTypes {
if supportedUse {
continue
}
return fmt.Errorf("connector %q used as exporter in %s pipeline but not used in any supported receiver pipeline", connID, expType)
}
for recType, supportedUse := range recTypes {
if supportedUse {
continue
}
return fmt.Errorf("connector %q used as receiver in %s pipeline but not used in any supported exporter pipeline", connID, recType)
}
for _, eID := range connectorsAsExporter[connID] {
for _, rID := range connectorsAsReceiver[connID] {
if connectorStability(connFactory, eID.Signal(), rID.Signal()) == component.StabilityLevelUndefined {
// Connector is not supported for this combination, but we know it is used correctly elsewhere
continue
}
connNode := g.createConnector(eID, rID, connID)
g.pipelines[eID].exporters[connNode.ID()] = connNode
g.pipelines[rID].receivers[connNode.ID()] = connNode
}
}
}
return nil
}
func (g *Graph) createReceiver(pipelineID pipeline.ID, recvID component.ID) *receiverNode {
rcvrNode := newReceiverNode(pipelineID.Signal(), recvID)
if node := g.componentGraph.Node(rcvrNode.ID()); node != nil {
instanceID := g.instanceIDs[node.ID()]
g.instanceIDs[node.ID()] = instanceID.WithPipelines(pipelineID)
return node.(*receiverNode)
}
g.componentGraph.AddNode(rcvrNode)
g.instanceIDs[rcvrNode.ID()] = componentstatus.NewInstanceID(
recvID, component.KindReceiver, pipelineID,
)
return rcvrNode
}
func (g *Graph) createProcessor(pipelineID pipeline.ID, procID component.ID) *processorNode {
procNode := newProcessorNode(pipelineID, procID)
g.componentGraph.AddNode(procNode)
g.instanceIDs[procNode.ID()] = componentstatus.NewInstanceID(
procID, component.KindProcessor, pipelineID,
)
return procNode
}
func (g *Graph) createExporter(pipelineID pipeline.ID, exprID component.ID) *exporterNode {
expNode := newExporterNode(pipelineID.Signal(), exprID)
if node := g.componentGraph.Node(expNode.ID()); node != nil {
instanceID := g.instanceIDs[expNode.ID()]
g.instanceIDs[expNode.ID()] = instanceID.WithPipelines(pipelineID)
return node.(*exporterNode)
}
g.componentGraph.AddNode(expNode)
g.instanceIDs[expNode.ID()] = componentstatus.NewInstanceID(
expNode.componentID, component.KindExporter, pipelineID,
)
return expNode
}
func (g *Graph) createConnector(exprPipelineID, rcvrPipelineID pipeline.ID, connID component.ID) *connectorNode {
connNode := newConnectorNode(exprPipelineID.Signal(), rcvrPipelineID.Signal(), connID)
if node := g.componentGraph.Node(connNode.ID()); node != nil {
instanceID := g.instanceIDs[connNode.ID()]
g.instanceIDs[connNode.ID()] = instanceID.WithPipelines(exprPipelineID, rcvrPipelineID)
return node.(*connectorNode)
}
g.componentGraph.AddNode(connNode)
g.instanceIDs[connNode.ID()] = componentstatus.NewInstanceID(
connNode.componentID, component.KindConnector, exprPipelineID, rcvrPipelineID,
)
return connNode
}
// Iterates through the pipelines and creates edges between components.
func (g *Graph) createEdges() {
for _, pg := range g.pipelines {
// Draw edges from each receiver to the capability node.
for _, receiver := range pg.receivers {
g.componentGraph.SetEdge(g.componentGraph.NewEdge(receiver, pg.capabilitiesNode))
}
// Iterates through processors, chaining them together. starts with the capabilities node.
var from, to graph.Node
from = pg.capabilitiesNode
for _, processor := range pg.processors {
to = processor
g.componentGraph.SetEdge(g.componentGraph.NewEdge(from, to))
from = processor
}
// Always inserts a fanout node before any exporters. If there is only one
// exporter, the fanout node is still created and acts as a noop.
to = pg.fanOutNode
g.componentGraph.SetEdge(g.componentGraph.NewEdge(from, to))
for _, exporter := range pg.exporters {
g.componentGraph.SetEdge(g.componentGraph.NewEdge(pg.fanOutNode, exporter))
}
}
}
// Uses the already built graph g to instantiate the actual components for each component of each pipeline.
// Handles calling the factories for each component - and hooking up each component to the next.
// Also calculates whether each pipeline mutates data so the receiver can know whether it needs to clone the data.
func (g *Graph) buildComponents(ctx context.Context, set Settings) error {
nodes, err := topo.Sort(g.componentGraph)
if err != nil {
return cycleErr(err, topo.DirectedCyclesIn(g.componentGraph))
}
for i := len(nodes) - 1; i >= 0; i-- {
node := nodes[i]
switch n := node.(type) {
case *receiverNode:
err = n.buildComponent(ctx, set.Telemetry, set.BuildInfo, set.ReceiverBuilder, g.nextConsumers(n.ID()))
case *processorNode:
// nextConsumers is guaranteed to be length 1. Either it is the next processor or it is the fanout node for the exporters.
err = n.buildComponent(ctx, set.Telemetry, set.BuildInfo, set.ProcessorBuilder, g.nextConsumers(n.ID())[0])
case *exporterNode:
err = n.buildComponent(ctx, set.Telemetry, set.BuildInfo, set.ExporterBuilder)
case *connectorNode:
err = n.buildComponent(ctx, set.Telemetry, set.BuildInfo, set.ConnectorBuilder, g.nextConsumers(n.ID()))
case *capabilitiesNode:
capability := consumer.Capabilities{
// The fanOutNode represents the aggregate capabilities of the exporters in the pipeline.
MutatesData: g.pipelines[n.pipelineID].fanOutNode.getConsumer().Capabilities().MutatesData,
}
for _, proc := range g.pipelines[n.pipelineID].processors {
capability.MutatesData = capability.MutatesData || proc.getConsumer().Capabilities().MutatesData
}
next := g.nextConsumers(n.ID())[0]
switch n.pipelineID.Signal() {
case pipeline.SignalTraces:
cc := capabilityconsumer.NewTraces(next.(consumer.Traces), capability)
n.baseConsumer = cc
n.ConsumeTracesFunc = cc.ConsumeTraces
case pipeline.SignalMetrics:
cc := capabilityconsumer.NewMetrics(next.(consumer.Metrics), capability)
n.baseConsumer = cc
n.ConsumeMetricsFunc = cc.ConsumeMetrics
case pipeline.SignalLogs:
cc := capabilityconsumer.NewLogs(next.(consumer.Logs), capability)
n.baseConsumer = cc
n.ConsumeLogsFunc = cc.ConsumeLogs
case xpipeline.SignalProfiles:
cc := capabilityconsumer.NewProfiles(next.(xconsumer.Profiles), capability)
n.baseConsumer = cc
n.ConsumeProfilesFunc = cc.ConsumeProfiles
}
case *fanOutNode:
nexts := g.nextConsumers(n.ID())
switch n.pipelineID.Signal() {
case pipeline.SignalTraces:
consumers := make([]consumer.Traces, 0, len(nexts))
for _, next := range nexts {
consumers = append(consumers, next.(consumer.Traces))
}
n.baseConsumer = fanoutconsumer.NewTraces(consumers)
case pipeline.SignalMetrics:
consumers := make([]consumer.Metrics, 0, len(nexts))
for _, next := range nexts {
consumers = append(consumers, next.(consumer.Metrics))
}
n.baseConsumer = fanoutconsumer.NewMetrics(consumers)
case pipeline.SignalLogs:
consumers := make([]consumer.Logs, 0, len(nexts))
for _, next := range nexts {
consumers = append(consumers, next.(consumer.Logs))
}
n.baseConsumer = fanoutconsumer.NewLogs(consumers)
case xpipeline.SignalProfiles:
consumers := make([]xconsumer.Profiles, 0, len(nexts))
for _, next := range nexts {
consumers = append(consumers, next.(xconsumer.Profiles))
}
n.baseConsumer = fanoutconsumer.NewProfiles(consumers)
}
}
if err != nil {
return err
}
}
return nil
}
// Find all nodes
func (g *Graph) nextConsumers(nodeID int64) []baseConsumer {
nextNodes := g.componentGraph.From(nodeID)
nexts := make([]baseConsumer, 0, nextNodes.Len())
for nextNodes.Next() {
nexts = append(nexts, nextNodes.Node().(consumerNode).getConsumer())
}
return nexts
}
// A node-based representation of a pipeline configuration.
type pipelineNodes struct {
// Use map to assist with deduplication of connector instances.
receivers map[int64]graph.Node
// The node to which receivers emit. Passes through to processors.
// Easily accessible as the first node in a pipeline.
*capabilitiesNode
// The order of processors is very important. Therefore use a slice for processors.
processors []*processorNode
// Emits to exporters.
*fanOutNode
// Use map to assist with deduplication of connector instances.
exporters map[int64]graph.Node
}
func (g *Graph) StartAll(ctx context.Context, host *Host) error {
if host == nil {
return errors.New("host cannot be nil")
}
nodes, err := topo.Sort(g.componentGraph)
if err != nil {
return err
}
// Start in reverse topological order so that downstream components
// are started before upstream components. This ensures that each
// component's consumer is ready to consume.
for i := len(nodes) - 1; i >= 0; i-- {
node := nodes[i]
comp, ok := node.(component.Component)
if !ok {
// Skip capabilities/fanout nodes
continue
}
instanceID := g.instanceIDs[node.ID()]
host.Reporter.ReportStatus(
instanceID,
componentstatus.NewEvent(componentstatus.StatusStarting),
)
if compErr := comp.Start(ctx, &HostWrapper{Host: host, InstanceID: instanceID}); compErr != nil {
host.Reporter.ReportStatus(
instanceID,
componentstatus.NewPermanentErrorEvent(compErr),
)
// We log with zap.AddStacktrace(zap.DPanicLevel) to avoid adding the stack trace to the error log
g.telemetry.Logger.WithOptions(zap.AddStacktrace(zap.DPanicLevel)).
Error("Failed to start component",
zap.Error(compErr),
zap.String("type", instanceID.Kind().String()),
zap.String("id", instanceID.ComponentID().String()),
)
return compErr
}
host.Reporter.ReportOKIfStarting(instanceID)
}
return nil
}
func (g *Graph) ShutdownAll(ctx context.Context, reporter status.Reporter) error {
nodes, err := topo.Sort(g.componentGraph)
if err != nil {
return err
}
// Stop in topological order so that upstream components
// are stopped before downstream components. This ensures
// that each component has a chance to drain to its consumer
// before the consumer is stopped.
var errs error
for i := 0; i < len(nodes); i++ {
node := nodes[i]
comp, ok := node.(component.Component)
if !ok {
// Skip capabilities/fanout nodes
continue
}
instanceID := g.instanceIDs[node.ID()]
reporter.ReportStatus(
instanceID,
componentstatus.NewEvent(componentstatus.StatusStopping),
)
if compErr := comp.Shutdown(ctx); compErr != nil {
errs = multierr.Append(errs, compErr)
reporter.ReportStatus(
instanceID,
componentstatus.NewPermanentErrorEvent(compErr),
)
continue
}
reporter.ReportStatus(
instanceID,
componentstatus.NewEvent(componentstatus.StatusStopped),
)
}
return errs
}
func (g *Graph) GetExporters() map[pipeline.Signal]map[component.ID]component.Component {
exportersMap := make(map[pipeline.Signal]map[component.ID]component.Component)
exportersMap[pipeline.SignalTraces] = make(map[component.ID]component.Component)
exportersMap[pipeline.SignalMetrics] = make(map[component.ID]component.Component)
exportersMap[pipeline.SignalLogs] = make(map[component.ID]component.Component)
exportersMap[xpipeline.SignalProfiles] = make(map[component.ID]component.Component)
for _, pg := range g.pipelines {
for _, expNode := range pg.exporters {
// Skip connectors, otherwise individual components can introduce cycles
if expNode, ok := g.componentGraph.Node(expNode.ID()).(*exporterNode); ok {
exportersMap[expNode.pipelineType][expNode.componentID] = expNode.Component
}
}
}
return exportersMap
}
func cycleErr(err error, cycles [][]graph.Node) error {
var topoErr topo.Unorderable
if !errors.As(err, &topoErr) || len(cycles) == 0 || len(cycles[0]) == 0 {
return err
}
// There may be multiple cycles, but report only the first one.
cycle := cycles[0]
// The last node is a duplicate of the first node.
// Remove it because we may start from a different node.
cycle = cycle[:len(cycle)-1]
// A cycle always contains a connector. For the sake of consistent
// error messages report the cycle starting from a connector.
for i := 0; i < len(cycle); i++ {
if _, ok := cycle[i].(*connectorNode); ok {
cycle = append(cycle[i:], cycle[:i]...)
break
}
}
// Repeat the first node at the end to clarify the cycle
cycle = append(cycle, cycle[0])
// Build the error message
componentDetails := make([]string, 0, len(cycle))
for _, node := range cycle {
switch n := node.(type) {
case *processorNode:
componentDetails = append(componentDetails, fmt.Sprintf("processor %q in pipeline %q", n.componentID, n.pipelineID.String()))
case *connectorNode:
componentDetails = append(componentDetails, fmt.Sprintf("connector %q (%s to %s)", n.componentID, n.exprPipelineType, n.rcvrPipelineType))
default:
continue // skip capabilities/fanout nodes
}
}
return fmt.Errorf("cycle detected: %s", strings.Join(componentDetails, " -> "))
}
func connectorStability(f connector.Factory, expType, recType pipeline.Signal) component.StabilityLevel {
switch expType {
case pipeline.SignalTraces:
switch recType {
case pipeline.SignalTraces:
return f.TracesToTracesStability()
case pipeline.SignalMetrics:
return f.TracesToMetricsStability()
case pipeline.SignalLogs:
return f.TracesToLogsStability()
case xpipeline.SignalProfiles:
fprof, ok := f.(xconnector.Factory)
if !ok {
return component.StabilityLevelUndefined
}
return fprof.TracesToProfilesStability()
}
case pipeline.SignalMetrics:
switch recType {
case pipeline.SignalTraces:
return f.MetricsToTracesStability()
case pipeline.SignalMetrics:
return f.MetricsToMetricsStability()
case pipeline.SignalLogs:
return f.MetricsToLogsStability()
case xpipeline.SignalProfiles:
fprof, ok := f.(xconnector.Factory)
if !ok {
return component.StabilityLevelUndefined
}
return fprof.MetricsToProfilesStability()
}
case pipeline.SignalLogs:
switch recType {
case pipeline.SignalTraces:
return f.LogsToTracesStability()
case pipeline.SignalMetrics:
return f.LogsToMetricsStability()
case pipeline.SignalLogs:
return f.LogsToLogsStability()
case xpipeline.SignalProfiles:
fprof, ok := f.(xconnector.Factory)
if !ok {
return component.StabilityLevelUndefined
}
return fprof.LogsToProfilesStability()
}
case xpipeline.SignalProfiles:
fprof, ok := f.(xconnector.Factory)
if !ok {
return component.StabilityLevelUndefined
}
switch recType {
case pipeline.SignalTraces:
return fprof.ProfilesToTracesStability()
case pipeline.SignalMetrics:
return fprof.ProfilesToMetricsStability()
case pipeline.SignalLogs:
return fprof.ProfilesToLogsStability()
case xpipeline.SignalProfiles:
return fprof.ProfilesToProfilesStability()
}
}
return component.StabilityLevelUndefined
}
var (
_ getExporters = (*HostWrapper)(nil)
_ component.Host = (*HostWrapper)(nil)
_ componentstatus.Reporter = (*HostWrapper)(nil)
)
type HostWrapper struct {
*Host
InstanceID *componentstatus.InstanceID
}
func (host *HostWrapper) Report(event *componentstatus.Event) {
host.Reporter.ReportStatus(host.InstanceID, event)
}