forked from collinsmc23/ssh_honeypy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dashboard_data_parser.py
91 lines (70 loc) · 3.46 KB
/
dashboard_data_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Import library dependencies.
import pandas as pd
import re
import requests
# This file parses the various log files. The log files have different "formats" or information provided, so needed to create unique parsers for each.
# Each of these parsers takes the log file, gathers the specific information provided in the log, then returns the data in columns/rows Pandas dataframe type.
# Parser for the creds file. Returns IP Address, Username, Password.
def parse_creds_audits_log(creds_audits_log_file):
data = []
with open(creds_audits_log_file, 'r') as file:
for line in file:
parts = line.strip().split(', ')
ip_address = parts[0]
username = parts[1]
password = parts[2]
data.append([ip_address, username, password])
df = pd.DataFrame(data, columns=["ip_address", "username", "password"])
return df
# Parser for commands entered during SSH session.
def parse_cmd_audits_log(cmd_audits_log_file):
data = []
with open(cmd_audits_log_file, 'r') as file:
for line in file:
lines = line.strip().split('\n')
# Regular expression to extract IP address and command
pattern = re.compile(r"Command b'([^']*)'executed by (\d+\.\d+\.\d+\.\d+)")
for line in lines:
match = pattern.search(line)
if match:
command, ip = match.groups()
data.append({'IP Address': ip, 'Command': command})
df = pd.DataFrame(data)
return df
# Calculator to generate top 10 values from a dataframe. Supply a column name, counts how often each value occurs, stores in "count" column, then return dataframe with value/count.
def top_10_calculator(dataframe, column):
for col in dataframe.columns:
if col == column:
top_10_df = dataframe[column].value_counts().reset_index().head(10)
top_10_df.columns = [column, "count"]
return top_10_df
# Takes an IP address as string type, uses the Cleantalk API to look up IP Geolocation.
def get_country_code(ip):
data_list = []
# According to the CleanTalk API docs, API calls are rate limited to 1000 per 60 seconds.
url = f"https://api.cleantalk.org/?method_name=ip_info&ip={ip}"
try:
response = requests.get(url)
api_data = response.json()
if response.status_code == 200:
data = response.json()
ip_data = data.get('data', {})
country_info = ip_data.get(ip, {})
data_list.append({'IP Address': ip, 'Country_Code': country_info.get('country_code')})
elif response.status_code == 429:
print(api_data["error_message"])
print(f"[!] CleanTalk IP->Geolocation Rate Limited Exceeded.\n Please wait 60 seconds or turn Country=False (default).\n {response.status_code}")
else:
print(f"[!] Error: Unable to retrieve data for IP {ip}. Status code: {response.status_code}")
except requests.RequestException as e:
print(f"[!] Request failed: {e}")
return data_list
# Takes a dataframe with the IP addresses, converts each IP address to country geolocation code.
def ip_to_country_code(dataframe):
data = []
for ip in dataframe['ip_address']:
get_country = get_country_code(ip)
parse_get_country = get_country[0]["Country_Code"]
data.append({"IP Address": ip, "Country_Code": parse_get_country})
df = pd.DataFrame(data)
return df