-
Notifications
You must be signed in to change notification settings - Fork 18
/
replicate.py
executable file
·110 lines (85 loc) · 3.95 KB
/
replicate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import cog
from cog import BasePredictor, BaseModel, Input
import torch
from configs.config_RefVSR_MFID_8K import get_config
from ckpt_manager import CKPT_Manager
from trainers import create_trainer
from utils import *
from data_loader.utils import load_file_list, refine_image, read_frame
from pathlib import Path
import tempfile
import cv2
#import os
#os.environ["CUDA_VISIBLE_DEVICES"]="6"
class Output(BaseModel):
LR_input: cog.Path
SR_output: cog.Path
class Predictor(BasePredictor):
def setup(self):
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.config = get_config('RefVSR_CVPR2022', 'RefVSR_MFID_8K', 'config_RefVSR_MFID_8K')
self.config.network = 'RefVSR'
self.config.EVAL.is_gradio = True
self.config.EVAL.is_replicate = True
self.config.frame_num = 3
self.config.center_idx = self.config.frame_num//2
model = create_trainer(self.config)
self.network = model.get_network().eval()
self.network = self.network.to(self.device)
#ckpt_manager = CKPT_Manager(config.LOG_DIR.ckpt, config.mode, config.cuda, config.max_ckpt_num, is_descending = False)
ckpt_manager = CKPT_Manager(root_dir='', model_name='RefVSR_MFID_8K', cuda=self.config.cuda, dist=self.config.dist)
load_state, ckpt_name = ckpt_manager.load_ckpt(self.network, abs_name = './ckpt/RefVSR_MFID_8K.pytorch')
print(load_state)
def crop_img(self, img):
max_long_side = 1280
max_short_side = 720
h, w, c = img.shape
long_crop = 0
short_crop = 0
if max(h, w) > max_long_side:
long_crop = max(h, w) - max_long_side
if min(h, w) > max_short_side:
short_crop = min(h, w) - max_short_side
if h > w:
h_start = long_crop//2
h_end = long_crop//2 + max_long_side
w_start = short_crop//2
w_end = short_crop//2 + max_short_side
else:
w_start = long_crop//2
w_end = long_crop//2 + max_long_side
h_start = short_crop//2
h_end = short_crop//2 + max_short_side
img = img[h_start:h_end, w_start:w_end, :]
return img
def predict(self,
LR: cog.Path = Input(description="LR ultra-wide frame to super-resolve"),
Ref: cog.Path = Input(description="Reference wide-angle frame")
) -> Output:
#) -> cog.Path:
assert str(LR).split('.')[-1] in ['png', 'jpg'], 'image should end with ".jpg" or ".png"'
assert str(Ref).split('.')[-1] in ['png', 'jpg'], 'image should end with ".jpg" or ".png"'
LR_cpu = self.crop_img(read_frame(str(LR)))
Ref_cpu = self.crop_img(read_frame(str(Ref)))
#LR_cpu = read_frame(str(LR))
#Ref_cpu = read_frame(str(Ref))
LR = torch.FloatTensor(refine_image(LR_cpu, 8)[None, :, :, :].transpose(0, 3, 1, 2).copy()).to(self.device)
Ref = torch.FloatTensor(refine_image(Ref_cpu, 8)[None, :, :, :].transpose(0, 3, 1, 2).copy()).to(self.device)
n, c, h, w = LR.size()
LR = LR[:, None, :, :, :].expand(n, self.config.frame_num, c, h, w)
Ref = Ref[:, None, :, :, :].expand(n, self.config.frame_num, c, h, w)
with torch.no_grad():
with torch.cuda.amp.autocast():
outs = self.network(LR, Ref, True, False, False)
output = outs['result']
output_cpu = output.cpu().numpy()[0].transpose(1, 2, 0)
output_cpu = (np.flip(output_cpu, 2) * 255).astype(np.uint8)
out_path = cog.Path(tempfile.mkdtemp()) / 'out.png'
cv2.imwrite(str(out_path), output_cpu)
#cv2.imwrite('./out.png', output_cpu)
#return out_path
input_cpu = LR.cpu().numpy()[0, 0].transpose(1, 2, 0)
input_cpu = (np.flip(input_cpu, 2) * 255).astype(np.uint8)
inp_path = cog.Path(tempfile.mkdtemp()) / 'inp.png'
cv2.imwrite(str(inp_path), input_cpu)
return Output(LR_input=inp_path, SR_output=out_path)